Building upon our early work, we construct infinitely many new smooth structures on closed simply connected spin 4-manifolds with nonnegative signature.
Dans la continuité de notre travail précédent, nous construisons une infinité de nouvelles structures lisses sur les variétés de spin simplement connexes, fermées, de dimension 4 et de signature positive ou nulle.
Accepted:
Published online:
Anar Akhmedov 1; B. Doug Park 2
@article{CRMATH_2019__357_3_296_0, author = {Anar Akhmedov and B. Doug Park}, title = {Geography of simply connected spin symplectic 4-manifolds, {II}}, journal = {Comptes Rendus. Math\'ematique}, pages = {296--298}, publisher = {Elsevier}, volume = {357}, number = {3}, year = {2019}, doi = {10.1016/j.crma.2019.02.002}, language = {en}, }
Anar Akhmedov; B. Doug Park. Geography of simply connected spin symplectic 4-manifolds, II. Comptes Rendus. Mathématique, Volume 357 (2019) no. 3, pp. 296-298. doi : 10.1016/j.crma.2019.02.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2019.02.002/
[1] Geography of simply connected spin symplectic 4-manifolds, Math. Res. Lett., Volume 17 (2010), pp. 483-492
[2] Spin symplectic 4-manifolds near Bogomolov–Miyaoka–Yau line, J. Gökova Geom. Topol. GGT, Volume 4 (2010), pp. 55-66
[3] Necessary conditions for the existence of branched coverings, Invent. Math., Volume 54 (1979), pp. 1-10
[4] Double Kodaira fibrations, J. Reine Angew. Math., Volume 628 (2009), pp. 205-233
[5] 4-manifolds and Kirby calculus, Grad. Stud. Math., vol. 20, American Mathematical Society, Providence, RI, USA, 1999
[6] The signature of ramified coverings, Global Analysis (Papers in Honor of K. Kodaira), University of Tokyo Press, Tokyo, 1969, pp. 253-265
[7] Intersection forms of spin 4-manifolds and the -equivariant Mahowald invariant | arXiv
[8] R. Kirby, Problems in low-dimensional topology, math.berkeley.edu/~kirby/problems.ps.gz.
[9] Double Kodaira fibrations with small signature | arXiv
Cited by Sources:
Comments - Policy