Algebraic geometry
Complex surfaces of general type with K2 = 3,4 and pg = q = 0
Comptes Rendus. Mathématique, Volume 357 (2019) no. 3, pp. 291-295.

We construct complex surfaces of general type with $pg=0$ and $K2=3,4$ as double covers of Enriques surfaces (called Keum–Naie surfaces) with a different way to the original constructions of Keum and Naie. As a result, we show that there is a $(−4)$-curve on the example with $K2=3$, which might imply a special relation between Keum–Naie surfaces with $K2=3$ and $K2=4$.

Nous construisons des surfaces complexes de type général avec $pg=0$ et $K2=3,4$ (appelées surfaces de Keum–Naie), comme revêtements doubles de surfaces d'Enriques. Notre construction diffère de celle utilisée originellement par Keum–Naie. Comme application, nous montrons qu'il existe une $(−4)$-courbe sur une telle surface avec $K2=3$, ce qui suggère l'existence d'une relation particulière entre les surfaces de Keum–Naie satisfaisant $K2=3$ et $K2=4$.

Accepted:
Published online:
DOI: 10.1016/j.crma.2019.02.006

Heesang Park 1; Dongsoo Shin 2; Yoonjeong Yang 2

1 Department of Mathematics, Konkuk University, Seoul 05029, Republic of Korea
2 Department of Mathematics, Chungnam National University, Daejeon 34134, Republic of Korea
@article{CRMATH_2019__357_3_291_0,
author = {Heesang Park and Dongsoo Shin and Yoonjeong Yang},
title = {Complex surfaces of general type with {\protect\emph{K}\protect\textsuperscript{2} = 3,4} and \protect\emph{p}\protect\textsubscript{\protect\emph{g}} = \protect\emph{q} = 0},
journal = {Comptes Rendus. Math\'ematique},
pages = {291--295},
publisher = {Elsevier},
volume = {357},
number = {3},
year = {2019},
doi = {10.1016/j.crma.2019.02.006},
language = {en},
}
TY  - JOUR
AU  - Heesang Park
AU  - Dongsoo Shin
AU  - Yoonjeong Yang
TI  - Complex surfaces of general type with K2 = 3,4 and pg = q = 0
JO  - Comptes Rendus. Mathématique
PY  - 2019
SP  - 291
EP  - 295
VL  - 357
IS  - 3
PB  - Elsevier
DO  - 10.1016/j.crma.2019.02.006
LA  - en
ID  - CRMATH_2019__357_3_291_0
ER  - 
%0 Journal Article
%A Heesang Park
%A Dongsoo Shin
%A Yoonjeong Yang
%T Complex surfaces of general type with K2 = 3,4 and pg = q = 0
%J Comptes Rendus. Mathématique
%D 2019
%P 291-295
%V 357
%N 3
%I Elsevier
%R 10.1016/j.crma.2019.02.006
%G en
%F CRMATH_2019__357_3_291_0
Heesang Park; Dongsoo Shin; Yoonjeong Yang. Complex surfaces of general type with K2 = 3,4 and pg = q = 0. Comptes Rendus. Mathématique, Volume 357 (2019) no. 3, pp. 291-295. doi : 10.1016/j.crma.2019.02.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2019.02.006/

[1] W.P. Barth; K. Hulek; C.A.M. Peters; A. Van de Ven Compact Complex Surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, vol. 4, Springer-Verlag, Berlin, 2004

[2] J. Keum On Kummer Surfaces, University of Michigan, Ann Arbor, MI, USA, 1988 (PhD Thesis)

[3] J. Keum, Some new surfaces of general type with $pg=0$, 1988, unpublished manuscript.

[4] M. Mendes Lopes; R. Pardini Enriques surfaces with eight nodes, Math. Z., Volume 241 (2002), pp. 673-683

[5] D. Naie Surfaces d'Enriques et une construction de surfaces de type général avec $pg=0$, Math. Z., Volume 215 (1994), pp. 269-280

[6] C. Rito Some bidouble planes with $pg=q=0$ and $4≤K2≤7$, Int. J. Math., Volume 26 (2015) no. 5

Cited by Sources: