Comptes Rendus
Group Theory
An amenability-like property of finite energy path and loop groups
Comptes Rendus. Mathématique, Volume 358 (2020) no. 11-12, pp. 1139-1155.

We show that the groups of finite energy loops and paths (that is, those of Sobolev class H 1 ) with values in a compact connected Lie group, as well as their central extensions, satisfy an amenability-like property: they admit a left-invariant mean on the space of bounded functions uniformly continuous with regard to a left-invariant metric. Every strongly continuous unitary representation π of such a group (which we call skew-amenable) has a conjugation-invariant state on B( π ).

Nous montrons que les groupes de lacets et de chemins à énergie finie (c.à.d. de classe H 1 de Sobolev) à valeurs dans un groupe de Lie compact et connexe, ainsi que leurs extensions centrales, satisfont une version de la moyennabilité : ils admettent une moyenne invariante à gauche sur l’espace de fonctions bornées uniformément continues par rapport a une métrique invariante à gauche. Chaque représentation unitaire continue, π, d’un tel groupe (que nous disons d’être “moyennable en biais”) possède un état sur B( π ) invariant sous conjugaison.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.134

Vladimir Pestov 1, 2

1 Departamento de Matemática, Universidade Federal de Santa Catarina, Campus Universitário Trindade, CEP 88.040-900 Florianópolis-SC, Brasil
2 Département de mathématiques et de statistique, Université d’Ottawa, Complexe STEM, 150 Louis-Pasteur Pvt, Ottawa, Ontario K1N 6N5 Canada
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMATH_2020__358_11-12_1139_0,
     author = {Vladimir Pestov},
     title = {An amenability-like property of finite energy path and loop groups},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1139--1155},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {11-12},
     year = {2020},
     doi = {10.5802/crmath.134},
     language = {en},
}
TY  - JOUR
AU  - Vladimir Pestov
TI  - An amenability-like property of finite energy path and loop groups
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 1139
EP  - 1155
VL  - 358
IS  - 11-12
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.134
LA  - en
ID  - CRMATH_2020__358_11-12_1139_0
ER  - 
%0 Journal Article
%A Vladimir Pestov
%T An amenability-like property of finite energy path and loop groups
%J Comptes Rendus. Mathématique
%D 2020
%P 1139-1155
%V 358
%N 11-12
%I Académie des sciences, Paris
%R 10.5802/crmath.134
%G en
%F CRMATH_2020__358_11-12_1139_0
Vladimir Pestov. An amenability-like property of finite energy path and loop groups. Comptes Rendus. Mathématique, Volume 358 (2020) no. 11-12, pp. 1139-1155. doi : 10.5802/crmath.134. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.134/

[1] Sergio Albeverio; Raphael Høegh-Krohn; Jean A. Marion; Daniel H. Testard; Bruno S. Torrésani Noncommutative distributions. Unitary representation of gauge groups and algebras, Pure and Applied Mathematics, 175, Marcel Dekker, 1993 | Zbl

[2] Mohammed E. B. Bekka Amenable unitary representations of locally compact groups, Invent. Math., Volume 100 (1990) no. 2, pp. 383-401 | DOI | MR | Zbl

[3] Nicolas Bourbaki Topologie Générale I, Hermann, 1971

[4] Alessandro Carderi; Andreas Thom An exotic group as limit of finite special linear groups, Ann. Inst. Fourier, Volume 68 (2018) no. 1, pp. 257-273 | DOI | Numdam | MR | Zbl

[5] Alan Carey; Hendrik Grundling On the problem of the amenability of the gauge group, Lett. Math. Phys., Volume 68 (2004) no. 2, pp. 113-120 | DOI | MR | Zbl

[6] Jan De Vries Elements of topological dynamics, Mathematics and its Applications, 257, Kluwer Academic Publishers, 1993 | MR | Zbl

[7] John D. Dollard; Charles N. Friedman Product integration with applications to differential equations, Encyclopedia of Mathematics and its Applications, 10, Addison-Wesley Publishing Group, 1979 | MR | Zbl

[8] Ryszard Engelking General Topology, Monografie Matematyczne, 60, PWN - Polish Scientific Publishers, 1977 | Zbl

[9] David H. Fremlin Measure theory. Vol. 2. Broad foundations, Torres Fremlin, 2003 (corrected second printing of the 2001 original) | Zbl

[10] M. Isabel Garrido; Jesús A. Jaramillo Lipschitz-type functions on metric spaces, J. Math. Anal. Appl., Volume 340 (2008) no. 1, pp. 282-290 | DOI | MR | Zbl

[11] Thierry Giordano; Vladimir Pestov Some extremely amenable groups related to operator algebras and ergodic theory, J. Inst. Math. Jussieu, Volume 6 (2007) no. 2, pp. 279-315 | DOI | MR | Zbl

[12] Frederick P. Greenleaf Invariant means on topological groups and their applications, Van Nostrand Mathematical Studies, 16, Van Nostrand Reinhold Co., 1969 | MR | Zbl

[13] Pierre de la Harpe Moyennabilité de quelques groupes topologiques de dimension infinie, C. R. Math. Acad. Sci. Paris, Volume 277 (1973), pp. 1037-1040 | Zbl

[14] Pierre de la Harpe Moyennabilité du groupe unitaire et propriété P de Schwartz des algèbres de von Neumann, Algèbres d’opérateurs (Sém., Les Plains-sur-Bex, 1978) (Lecture Notes in Mathematics), Volume 725, Springer, 1979, pp. 220-227 | DOI | Zbl

[15] Michel Ledoux The concentration of measure phenomenon, Mathematical Surveys and Monographs, 89, American Mathematical Society, 2001 | MR | Zbl

[16] Marie-Paule Malliavin; Paul Malliavin Integration on loop group III. Asymptotic Peter–Weyl orthogonality, J. Funct. Anal., Volume 108 (1992), pp. 13-46 | DOI | MR | Zbl

[17] Hideki Omori Infinite-dimensional Lie groups, Translations of Mathematical Monographs, 158, American Mathematical Society, 1997 | MR | Zbl

[18] Richard S. Palais Foundations of global non-linear analysis, Mathematics Lecture Note Series, W.A. Benjamin, Inc., 1968 | Zbl

[19] Vladimir Pestov Dynamics of Infinite-Dimensional Groups: The Ramsey–Dvoretzky–Milman Phenomenon, University Lecture Series, 40, American Mathematical Society, 2006 | Zbl

[20] Pierre Samuel Ultrafilters and compactification of uniform spaces, Trans. Am. Math. Soc., Volume 64 (1948), pp. 100-132 | DOI | MR | Zbl

[21] Friedrich Martin Schneider; Andreas Thom On Følner sets in topological groups, Compos. Math., Volume 154 (2018) no. 7, pp. 1333-1361 | DOI | Zbl

Cited by Sources:

Comments - Policy