The maximal attractors of bivariate diagonal and Bertino copulas are determined under suitable regularity conditions. Some consequences of these facts are drawn, namely bounds on the maximal attractor of a symmetric copula with a given diagonal section, and bounds on Spearman’s rho and Kendall’s tau for an exchangeable extreme-value copula whose upper-tail dependence coefficient is known. Some of these results are then extended to the case of arbitrary bivariate copulas and to multivariate copulas.
Les attracteurs maximaux des copules bivariées diagonales et de Bertino sont déterminés sous des conditions de régularité idoines. On en déduit des bornes sur l’attracteur maximal d’une copule symétrique à coupe diagonale donnée, ainsi que des bornes sur le rho de Spearman et le tau de Kendall d’une copule de valeurs extrêmes échangeable dont le coefficient de dépendance caudale supérieure est connu. Certains de ces résultats sont ensuite étendus aux cas de copules bivariées quelconques et de copules multivariées.
Revised:
Accepted:
Published online:
Christian Genest 1; Magid Sabbagh 2
@article{CRMATH_2020__358_11-12_1157_0, author = {Christian Genest and Magid Sabbagh}, title = {Comportement extr\'emal des copules diagonales et de {Bertino}}, journal = {Comptes Rendus. Math\'ematique}, pages = {1157--1167}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {11-12}, year = {2020}, doi = {10.5802/crmath.135}, language = {fr}, }
TY - JOUR AU - Christian Genest AU - Magid Sabbagh TI - Comportement extrémal des copules diagonales et de Bertino JO - Comptes Rendus. Mathématique PY - 2020 SP - 1157 EP - 1167 VL - 358 IS - 11-12 PB - Académie des sciences, Paris DO - 10.5802/crmath.135 LA - fr ID - CRMATH_2020__358_11-12_1157_0 ER -
Christian Genest; Magid Sabbagh. Comportement extrémal des copules diagonales et de Bertino. Comptes Rendus. Mathématique, Volume 358 (2020) no. 11-12, pp. 1157-1167. doi : 10.5802/crmath.135. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.135/
[1] Multivariate Bertino copulas, J. Math. Anal. Appl., Volume 434 (2016) no. 2, pp. 1346-1364 | DOI | MR | Zbl
[2] Sulla dissomiglianza tra mutabili cicliche, Metron, Volume 35 (1977), pp. 53-88 | MR | Zbl
[3] Copula Methods in Finance, Wiley Finance Series, John Wiley & Sons, 2004 | Zbl
[4] A continuous general multivariate distribution and its properties, Commun. Stat., Theory Methods, Volume A10 (1981) no. 4, pp. 339-353 | DOI | MR | Zbl
[5] On the construction of multivariate extreme value models via copulas, Environmetrics, Volume 21 (2010) no. 2, pp. 143-161 | DOI | MR
[6] Principles of Copula Theory, CRC Press, 2016 | Zbl
[7] Constructions of copulas with given diagonal (and opposite diagonal) sections and some generalizations, Depend. Model., Volume 6 (2018) no. 1, pp. 139-155 | DOI | MR | Zbl
[8] Copulas constructed from diagonal sections, Distributions With Given Marginals and Moment Problems, Kluwer Academic Publishers, 1997, pp. 129-136 | DOI | Zbl
[9] The Bertino family of copulas, Distributions With Given Marginals and Statistical Modelling, Kluwer Academic Publishers, 2002, pp. 81-91 | DOI | Zbl
[10] “Understanding relationships using copulas” by Edward Frees and Emiliano Valdez, January 1998 (Discussion), N. Am. Actuar. J., Volume 2 (1998) no. 3, pp. 143-149 | DOI
[11] Copula modeling for extremes, Encyclopedia of Environmetrics, John Wiley & Sons, 2012, pp. 530-541 | DOI
[12] Modeling dependence beyond correlation, Statistics in Action : A Canadian Outlook, CRC Press, 2014, pp. 59-78
[13] A characterization of quasi-copulas, J. Multivariate Anal., Volume 69 (1999) no. 2, pp. 193-205 | DOI | MR | Zbl
[14] Rank-based inference for bivariate extreme-value copulas, Ann. Stat., Volume 37 (2009) no. 5B, pp. 2990-3022 | DOI | MR | Zbl
[15] Propriétés statistiques des copules de valeurs extrêmes bidimensionnelles, Can. J. Stat., Volume 26 (1998) no. 1, pp. 187-197 | DOI | Zbl
[16] Elements of Copula Modeling with R, Use R !, Springer, 2018 | DOI | Zbl
[17] On copulas and their diagonals, Inf. Sci., Volume 179 (2009) no. 17, pp. 2863-2871 | DOI | MR | Zbl
[18] On extreme value copulas with given concordance measures, New Trends in Aggregation Theory (Advances in Intelligent Systems and Computing), Volume 981, Springer, 2019, pp. 29-46 | DOI
[19] Parametric families of multivariate distributions with given margins, J. Multivariate Anal., Volume 46 (1993) no. 2, pp. 262-282 | MR | Zbl
[20] Multivariate Models and Dependence Concepts, Monographs on Statistics and Applied Probability, 73, Chapman & Hall, 1997 | MR | Zbl
[21] Dependence Modeling With Copulas, Monographs on Statistics and Applied Probability, 134, CRC Press, 2014 | Zbl
[22] On the size of the class of bivariate extreme-value copulas with a fixed value of Spearman’s rho or Kendall’s tau, J. Math. Anal. Appl., Volume 472 (2019) no. 1, pp. 920-936 | DOI | MR | Zbl
[23] Construction of asymmetric multivariate copulas, J. Multivariate Anal., Volume 99 (2008) no. 10, pp. 2234-2250 erratum in ibid. 102 (2011), no. 4, p. 869-870 | DOI | MR | Zbl
[24] Quantitative Risk Management : Concepts, Techniques and Tools, Princeton Series in Finance, Princeton University Press, 2005 | Zbl
[25] An Introduction to Copulas, Springer Series in Statistics, Springer, 2006 | Zbl
[26] Best-possible bounds on sets of bivariate distribution functions, J. Multivariate Anal., Volume 90 (2004) no. 2, pp. 348-358 | DOI | MR | Zbl
[27] On the construction of copulas and quasi-copulas with given diagonal sections, Insur. Math. Econ., Volume 42 (2008) no. 2, pp. 473-483 | DOI | MR | Zbl
[28] Extremes in Nature : An Approach Using Copulas, Water Science and Technology Library, 56, Springer, 2007 | DOI
[29] On measures of concordance, Stochastica, Volume 8 (1984) no. 3, pp. 201-218 | MR | Zbl
[30] Bivariate extreme statistics. I, Ann. Inst. Stat. Math., Volume 11 (1960), pp. 195-210 | DOI | MR | Zbl
Cited by Sources:
Comments - Policy