Comptes Rendus
Équations aux dérivées partielles
Meromorphic solutions of generalized inviscid Burgers’ equations and related PDES
Comptes Rendus. Mathématique, Volume 358 (2020) no. 11-12, pp. 1169-1178.

The purposes of this paper are twofold. The first one is to describe entire solutions of certain type of PDEs in n with the modified KdV-Burgers equation and modified Zakharov-Kuznetsov equation as the prototypes. The second one is to characterize entire and meromorphic solutions of generalized inviscid Burgers’ equations in 2.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.136
Classification : 35F20, 32A15, 32A22

Feng Lü 1

1 College of Science, China University of Petroleum, Qingdao Shandong, 266580, P.R. China
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2020__358_11-12_1169_0,
     author = {Feng L\"u},
     title = {Meromorphic solutions of generalized inviscid {Burgers{\textquoteright}} equations and related {PDES}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1169--1178},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {11-12},
     year = {2020},
     doi = {10.5802/crmath.136},
     language = {en},
}
TY  - JOUR
AU  - Feng Lü
TI  - Meromorphic solutions of generalized inviscid Burgers’ equations and related PDES
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 1169
EP  - 1178
VL  - 358
IS  - 11-12
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.136
LA  - en
ID  - CRMATH_2020__358_11-12_1169_0
ER  - 
%0 Journal Article
%A Feng Lü
%T Meromorphic solutions of generalized inviscid Burgers’ equations and related PDES
%J Comptes Rendus. Mathématique
%D 2020
%P 1169-1178
%V 358
%N 11-12
%I Académie des sciences, Paris
%R 10.5802/crmath.136
%G en
%F CRMATH_2020__358_11-12_1169_0
Feng Lü. Meromorphic solutions of generalized inviscid Burgers’ equations and related PDES. Comptes Rendus. Mathématique, Volume 358 (2020) no. 11-12, pp. 1169-1178. doi : 10.5802/crmath.136. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.136/

[1] Der-Chen Chang; Bao Qin Li; Chung-Chun Yang On composition of meromorphic functions in several complex variables, Forum Math., Volume 7 (1995), pp. 77-94 | MR | Zbl

[2] Peter V. Dovbush Normal functions of many complex variables, Mosc. Univ. Math. Bull., Volume 36 (1981) no. 1, pp. 44-48 | Zbl

[3] Peter V. Dovbush Zalcman’s lemma in n, Complex Var. Theory Appl., Volume 65 (2020) no. 5, pp. 796-800 | DOI | MR | Zbl

[4] R. D. Fay Plane sound waves of finite amplitude, J. Acoust. Soc. Am., Volume 3 (1931), pp. 222-241 | DOI | Zbl

[5] M. M. M. Hassan New exact solutions of two nonlinear physical models, Commun. Theor. Phys., Volume 53 (2010) no. 4, pp. 596-604 | DOI | MR | Zbl

[6] Walter Kurt Hayman Meromorphic Functions, Oxford Mathematical Monographs, Clarendon Press, 1964 | Zbl

[7] Pei-Chu Hu; Bao Qin Li On meromorphic solutions of linear partial differential equations of second order, J. Math Anal Appl., Volume 393 (2012) no. 1, pp. 200-211 | MR | Zbl

[8] Pei-Chu Hu; Chung-Chun Yang Malmquist type theorem and factorization of meromorphic solutions of partial differential equations, Complex Var. Theory Appl., Volume 27 (1995) no. 3, pp. 269-285 | MR | Zbl

[9] Pei-Chu Hu; Chung-Chun Yang Unicity of Meromorphic Mappings, Advances in Complex Analysis and its Applications, 1, Kluwer Academic Publishers, 2003 | MR | Zbl

[10] Pei-Chu Hu; Chung-Chun Yang Global solutions of homogeneous linear partial differential equations of the second order, Mich. Math. J., Volume 58 (2009) no. 3, pp. 807-831 | MR | Zbl

[11] Pei-Chu Hu; Chung-Chun Yang The Tumura–Clunie theorem in several complex variables, Bull. Aust. Math. Soc., Volume 90 (2014) no. 3, pp. 444-456 | MR | Zbl

[12] Pei-Chu Hu; Chung-Chun Yang On complex solutions of certain partial differential equations, Complex Var. Elliptic Equ., Volume 62 (2017) no. 10, pp. 1492-1505 | MR | Zbl

[13] Robert O. Kujala Functions of finite λ-type in several complex variables, Trans. Am. Math. Soc., Volume 161 (1971), pp. 327-358 | MR | Zbl

[14] Bao Qin Li On reduction of functional-differential equations, Complex Var. Theory Appl., Volume 31 (1996) no. 4, pp. 311-324 | MR | Zbl

[15] Bao Qin Li Entire solutions of certain partial differential equations and factorization of partial derivatives, Trans. Am. Math. Soc., Volume 357 (2005) no. 8, pp. 3169-3177 | MR | Zbl

[16] Bao Qin Li entire solutions of uz1m+uz2n=eg, Nagoya Math. J., Volume 178 (2005), pp. 151-162 | Zbl

[17] Bao Qin Li On meromorphic solutions of f2+g2=1, Math. Z., Volume 258 (2008) no. 4, pp. 763-771 | Zbl

[18] Liangwen Liao; Weiyi Su; Chung-Chun Yang A Malmquist–Yosida type of theorem for the second-order algebraic differential equations, J. Differ. Equ., Volume 187 (2003) no. 1, pp. 63-71 | DOI | MR | Zbl

[19] Feng Lü; Junfeng Xu; Ang Chen Entire functions sharing polynomials with their first derivatives, Arch. Math., Volume 92 (2009) no. 6, pp. 593-601 | MR | Zbl

[20] Ervin Y. Rodin A Riccati solution for Burgers’ equation, Q. Appl. Math., Volume 27 (1970), pp. 541-545 | DOI | MR | Zbl

[21] Elias George Saleeby Meromorphic solutions of generalized inviscid Burgers’ equations and a family of quadratic PDEs, J. Math. Anal. Appl., Volume 425 (2015) no. 1, pp. 508-519 | DOI | MR | Zbl

[22] Wilhelm Stoll Introduction to Value Distribution Theory of Meromorphic Maps, Lecture Notes in Mathematics, 950, Springer, 1982 | MR | Zbl

[23] Richard M. Timoney Bloch functions in several complex variables I, Bull London Math Soc., Volume 12 (1980) no. 4, pp. 241-267 | DOI | MR | Zbl

[24] EROL Varoglu; W. D. Liam Finn Space-time finite elements incorporating characteristics for the Burgers’ equation, Int. J. Numer. Meth. Engng., Volume 16 (1980) no. Special Issue, p. 1716-184 | MR | Zbl

[25] Al Vitter The lemma of the logarithmic derivative in seveal complex variables, Duke Math. J., Volume 44 (1977) no. 1, pp. 89-104 | DOI | MR | Zbl

[26] Wenjun Yuan; Yong Huang; Yadong Shang All traveling wave exact solutions of two nonlinear physical models, Appl. Math. Comput., Volume 219 (2013) no. 11, pp. 6212-6223 | MR | Zbl

[27] Lawrence Zalcman Normal families: new perspectives, Bull. Am. Math. Soc., Volume 35 (1998) no. 3, pp. 215-230 | DOI | MR | Zbl

  • Hong Yan Xu; Kai Liu; Zuxing Xuan Results on solutions of several product type nonlinear partial differential equations in C3, Journal of Mathematical Analysis and Applications, Volume 543 (2025) no. 1, p. 21 (Id/No 128885) | DOI:10.1016/j.jmaa.2024.128885 | Zbl:1552.32004
  • Sanju Mandal; Molla Basir Ahamed Characterizations of finite order solutions of circular type partial differential-difference equations in Cn, Complex Analysis and Operator Theory, Volume 18 (2024) no. 4, p. 24 (Id/No 85) | DOI:10.1007/s11785-024-01530-4 | Zbl:7849479
  • Xiao Lan Liu; Hong Yan Xu; Yi Hui Xu; Nan Li Results on solutions of several systems of the product type complex partial differential difference equations, Demonstratio Mathematica, Volume 57 (2024), p. 14 (Id/No 20230153) | DOI:10.1515/dema-2023-0153 | Zbl:1543.30087
  • Elias G. Saleeby Factorization of complex analytic functions algebraically dependent on space curves and applications to compatible functional and differential equations, Mediterranean Journal of Mathematics, Volume 20 (2023) no. 1, p. 20 (Id/No 1) | DOI:10.1007/s00009-022-02159-3 | Zbl:1507.35079
  • Yi Hui Xu; Yan Fang Li; Xiao Lan Liu; Hong Yan Xu Transcendental entire solutions of several complex product-type nonlinear partial differential equations in C2, Open Mathematics, Volume 21 (2023), p. 17 (Id/No 20230151) | DOI:10.1515/math-2023-0151 | Zbl:1548.32006
  • Hong Yan Xu; Ling Xu Transcendental entire solutions for several quadratic binomial and trinomial PDEs with constant coefficients, Analysis and Mathematical Physics, Volume 12 (2022) no. 2, p. 21 (Id/No 64) | DOI:10.1007/s13324-022-00679-5 | Zbl:1487.32012

Cité par 6 documents. Sources : zbMATH

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: