In this note, We show that over a compact Hermitian manifold whose metric satisfies , every pseudo-effective vector bundle with vanishing first Chern number is in fact a numerically flat vector bundle.
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.182
Yong Chen 1
@article{CRMATH_2021__359_5_523_0, author = {Yong Chen}, title = {A note on pseudo-effective vector bundles with vanishing first {Chern} number over {non-K\"ahler} manifolds}, journal = {Comptes Rendus. Math\'ematique}, pages = {523--531}, publisher = {Acad\'emie des sciences, Paris}, volume = {359}, number = {5}, year = {2021}, doi = {10.5802/crmath.182}, zbl = {07371712}, language = {en}, }
TY - JOUR AU - Yong Chen TI - A note on pseudo-effective vector bundles with vanishing first Chern number over non-Kähler manifolds JO - Comptes Rendus. Mathématique PY - 2021 SP - 523 EP - 531 VL - 359 IS - 5 PB - Académie des sciences, Paris DO - 10.5802/crmath.182 LA - en ID - CRMATH_2021__359_5_523_0 ER -
Yong Chen. A note on pseudo-effective vector bundles with vanishing first Chern number over non-Kähler manifolds. Comptes Rendus. Mathématique, Volume 359 (2021) no. 5, pp. 523-531. doi : 10.5802/crmath.182. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.182/
[1] The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension, J. Algebr. Geom., Volume 22 (2013) no. 2, pp. 201-248 | DOI | Zbl
[2] Regularization of closed positive currents and Intersection Theory, J. Algebr. Geom., Volume 1 (1992) no. 3, pp. 361-409 | MR | Zbl
[3] Complex analytic and differential geometry, 2012 (online-book: https://www-fourier.ujf-grenoble.fr/demailly/manuscripts/agbook.pdf) | Zbl
[4] Compact complex manifolds with numerically effective tangent bundles, J. Algebr. Geom., Volume 3 (1994) no. 2, pp. 295-345 | MR | Zbl
[5] Segre forms and Kobayashi–Lübke inequality, Math. Z., Volume 283 (2016) no. 3-4, pp. 1033-1047 | DOI | MR | Zbl
[6] On Segre forms of positive vector bundles, Can. Math. Bull., Volume 55 (2012) no. 1, pp. 108-113 | DOI | MR | Zbl
[7] A nonlinear elliptic system for maps from Hermitian to Riemannian manifolds and rigidity theorems in Hermitian geometry, Acta Math., Volume 170 (1993) no. 2, pp. 221-254 | DOI | MR | Zbl
[8] Numerically flat holomorphic bundles over non-Kähler manifolds (2019) (https://arxiv.org/abs/1901.04680)
[9] A note on semistable Higgs bundles over compact Kähler manifolds, Ann. Global Anal. Geom., Volume 48 (2015) no. 4, pp. 345-355 | Zbl
[10] Pseudo-effective and numerically flat reflexive sheaves (2020) (https://arxiv.org/abs/2004.14676)
Cited by Sources:
Comments - Policy