logo CRAS
Comptes Rendus. Mathématique

Analyse numérique
Numerical analysis of the neutron multigroup SP N equations
[Analyse numérique des équations de la neutronique SP N multigroupe]
Comptes Rendus. Mathématique, Tome 359 (2021) no. 5, pp. 533-545.

Les équations de la neutronique SP N multigroupe, qui sont une approximation de l’équation de transport des neutrons, sont utilisées pour la modélisation des cœurs de réacteurs nucléaires. Dans le cas stationnaire, ces équations sont soit un problème à source, soit un problème aux valeurs propres. Nous étudions l’approximation de ces deux problèmes avec une méthode d’éléments finis conformes dans H 1 et une méthode d’éléments finis discontinus appelée Symmetric Interior Penalty Galerkin.

The multigroup neutron SP N equations, which are an approximation of the neutron transport equation, are used to model nuclear reactor cores. In their steady state, these equations can be written as a source problem or an eigenvalue problem. We study the resolution of those two problems with an H 1 -conforming finite element method and a Discontinuous Galerkin method, namely the Symmetric Interior Penalty Galerkin method.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : https://doi.org/10.5802/crmath.189
@article{CRMATH_2021__359_5_533_0,
     author = {Erell Jamelot and Fran\c{c}ois Madiot},
     title = {Numerical analysis of the neutron multigroup $SP_N$ equations},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {533--545},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {359},
     number = {5},
     year = {2021},
     doi = {10.5802/crmath.189},
     language = {en},
}
Erell Jamelot; François Madiot. Numerical analysis of the neutron multigroup $SP_N$ equations. Comptes Rendus. Mathématique, Tome 359 (2021) no. 5, pp. 533-545. doi : 10.5802/crmath.189. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.189/

[1] Ana Alonso; Anahí D. Russo Spectral approximation of variationally-posed eigenvalue problems by nonconforming methods, J. Comput. Appl. Math., Volume 223 (2009) no. 1, pp. 177-197 | Article | MR 2463110 | Zbl 1156.65094

[2] Ivo Babuška; John E. Osborn Eigenvalue problems, Handbook of numerical analysis, vol. II (Handbook of Numerical Analysis), Volume 2, North-Holland, 1991, pp. 645-785 | Zbl 0875.65087

[3] A.-M. Baudron; Jean-Jacques Lautard Simplified P N transport core calculations in the Apollo3 system International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2011)

[4] Haim Brezis Functional analysis, Sobolev spaces and partial differential equations, Universitext, Springer, 2010 | Zbl 1220.46002

[5] Patrick Ciarlet Jr.; L. Giret; Erell Jamelot; F. D. Kpadonou Numerical analysis of the mixed finite element method for the neutron diffusion eigenproblem with heterogeneous coefficients, ESAIM, Math. Model. Numer. Anal., Volume 52 (2018) no. 5, pp. 2003-2035 | Article | MR 3891752 | Zbl 07047489

[6] Patrick Ciarlet Jr.; Erell Jamelot; F. D. Kpadonou Domain decomposition methods for the diffusion equation with low-regularity solution, Comput. Math. Appl., Volume 74 (2017) no. 10, pp. 2369-2384 | Article | MR 3718122 | Zbl 1402.65155

[7] Philippe G. Ciarlet Linear and nonlinear functional analysis with applications, Society for Industrial and Applied Mathematics, 2013 | Zbl 1293.46001

[8] Robert Dautray; Jacques-Louis Lions Analyse mathématique et calcul numérique pour les sciences et les techniques, Masson, 1985 | Zbl 0642.35001

[9] Daniele Antonio Di Pietro; Alexandre Ern Mathematical aspects of discontinuous Galerkin methods, Mathématiques & Applications, 69, Springer, 2011 | Zbl 1231.65209

[10] James J. Duderstadt; Louis J. Hamilton Nuclear reactor analysis, John Wiley & Sons, Inc., 1976

[11] Alexandre Ern; Jean-Luc Guermond Theory and practice of finite elements, Applied Mathematical Sciences, 159, Springer, 2013 | Zbl 1059.65103

[12] E. M. Gelbard Application of spherical harmonics method to reactor problems, 1960 (Bettis Atomic Power Laboratory, West Mifflin, PA, Technical Report No. WAPD-BT-20)

[13] L. Giret Non-conforming domain decomposition for the multigroup neutron SPN equation (2018) (Ph. D. Thesis)

[14] Jean-Jacques Lautard; S. Loubière; C. Fedon-Magnaud CRONOS: a modular computational system for neutronic core calculations, 1992

[15] Jean-Jacques Lautard; J.-Y. Moller Minaret, a deterministic neutron transport solver for nuclear core calculations International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2011)

[16] Guriĭ I. Marchuk; Vyacheslav I. Lebedev Numerical methods in the theory of neutron transport, Harwood Academic Pub., 1986

[17] Serge Nicaise; Anna-Margarete Sändig General interface problems. I, II, Math. Methods Appl. Sci., Volume 17 (1994) no. 6, p. 395-429, 431-450 | Article | MR 1274152 | Zbl 0824.35015

[18] John E. Osborn Spectral approximation for compact operators, Math. Comp., Volume 29 (1975) no. 131, pp. 712-725 | Article | MR 383117 | Zbl 0315.35068

[19] D. Schneider; et al. APOLLO3 ® : CEA/DEN deterministic multi-purpose code for reactor physics analysis (PHYSOR-2016, May 1-5 2016, Sun Valley, Idaho, USA)

[20] T. Takeda; H. Ikeda 3-D neutron transport benchmarks, Journal of Nuclear Science and Technology, Volume 28 (1991) no. 7, pp. 656-669 | Article