[Fonctions de Green non-archimédiennes et décompositions de Zariski]
Nous étudions l’équation de Monge–Ampère non-archimédienne sur une variété projective lisse sur un corps de valuation discrète ou triviale. Tout d’abord, nous donnons un exemple de fonction de Green, associée à une valuation divisorielle, qui n’est pas -PL (i.e. pas une fonction modèle, dans le cas de valuation discrète). Ensuite, nous produisons un exemple de fonction dont la mesure de Monge–Ampère est à support dans un complexe dual, mais qui n’est invariante par la rétraction associée à aucun modele snc. Ceci répond négativement à une question de Burgos Gil et al. Nos exemples sont basés sur des constructions géométriques de Cutkosky et Lesieutre, et sont produits par changement de base à partir de fonctions de Green sur un corps trivialement valué ; cette théorie nous permet d’encoder de façon efficace la décomposition de Zariski de toute classe pseudo-effective.
We study the non-Archimedean Monge–Ampère equation on a smooth projective variety over a discretely or trivially valued field. First, we give an example of a Green’s function, associated to a divisorial valuation, which is not -PL (i.e. not a model function in the discretely valued case). Second, we produce an example of a function whose Monge–Ampère measure is a finite atomic measure supported in a dual complex, but which is not invariant under the retraction associated to any snc model. This answers a question by Burgos Gil et al. in the negative. Our examples are based on geometric constructions by Cutkosky and Lesieutre, and arise via base change from Green’s functions over a trivially valued field; this theory allows us to efficiently encode the Zariski decomposition of a pseudoeffective numerical class.
Accepté le :
Publié le :
Sébastien Boucksom 1 ; Mattias Jonsson 2
@article{CRMATH_2024__362_S1_5_0, author = {S\'ebastien Boucksom and Mattias Jonsson}, title = {Non-Archimedean {Green{\textquoteright}s} functions and {Zariski} decompositions}, journal = {Comptes Rendus. Math\'ematique}, pages = {5--42}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, number = {S1}, year = {2024}, doi = {10.5802/crmath.579}, language = {en}, }
Sébastien Boucksom; Mattias Jonsson. Non-Archimedean Green’s functions and Zariski decompositions. Comptes Rendus. Mathématique, Volume 362 (2024) no. S1, pp. 5-42. doi : 10.5802/crmath.579. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.579/
[1] Monge–Ampère equations and tropical affine structures on reflexive polytopes (2023) (https://arxiv.org/abs/2303.05276)
[2] A variational approach to complex Monge–Ampère equations, Publ. Math., Inst. Hautes Étud. Sci., Volume 117 (2013), pp. 179-245 | DOI | Numdam | Zbl
[3] The volume of an isolated singularity, Duke Math. J., Volume 161 (2012) no. 8, pp. 1455-1521 | MR | Zbl
[4] The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension, J. Algebr. Geom., Volume 22 (2013) no. 2, pp. 201-248 | DOI | Zbl
[5] Spectral theory and analytic geometry over non-Archimedean fields, Mathematical Surveys and Monographs, 33, American Mathematical Society, 1990, ix+169 pages | MR
[6] Differentiability of volumes of divisors and a problem of Teissier, J. Algebr. Geom., Volume 18 (2009) no. 2, pp. 279-308 | DOI | MR | Zbl
[7] Singular semipositive metrics in non-Archimedean geometry, J. Algebr. Geom., Volume 25 (2015) no. 1, pp. 77-139 | DOI | MR | Zbl
[8] Solution to a non-Archimedean Monge-Ampère equation, J. Am. Math. Soc., Volume 28 (2015) no. 3, pp. 617-667 | DOI | Zbl
[9] Differentiability of non-archimedean volumes and non-archimedean Monge–Ampère equations, Algebr. Geom., Volume 7 (2020) no. 2, pp. 113-152 | Zbl
[10] Singular semipositive metrics on line bundles on varieties over trivially valued fields (2018) (https://arxiv.org/abs/1801.08229v1)
[11] Thresholds, valuations, and K-stability, Adv. Math., Volume 365 (2020), 107062, 57 pages | MR | Zbl
[12] Global pluripotential theory over a trivially valued field, Ann. Fac. Sci. Toulouse, Math., Volume 31 (2022) no. 3, pp. 647-836 | DOI | Numdam | MR | Zbl
[13] A non-Archimedean approach to K-stability, I: Metric geometry of spaces of test configurations and valuations (2023) (https://arxiv.org/abs/2107.11221v3, to appear in Ann. Inst. Fourier)
[14] A non-Archimedean approach to K-stability, II: Divisorial stability and openness, J. Reine Angew. Math., Volume 805 (2023), pp. 1-53 | MR | Zbl
[15] Addendum to “Global pluripotential theory over a trivially valued field” (2023) (https://arxiv.org/abs/2206.07183, to appear in Ann. Fac. Sci. Toulouse Math.)
[16] Vanishing sequences and Okounkov bodies, Math. Ann., Volume 361 (2015) no. 3-4, pp. 811-834 | DOI | MR | Zbl
[17] Zariski chambers, volumes, and stable base loci, J. Reine Angew. Math., Volume 576 (2004), pp. 209-233 | MR | Zbl
[18] Divisorial Zariski decompositions on compact complex manifolds, Ann. Sci. Éc. Norm. Supér., Volume 37 (2004), pp. 45-76 | DOI | Numdam | MR | Zbl
[19] Mesures et équidistribution sur les espaces de Berkovich, J. Reine Angew. Math., Volume 595 (2006), pp. 215-235 | Zbl
[20] Formes différentielles réelles et courants sur les espaces de Berkovich (2012) (https://arxiv.org/abs/1204.6277)
[21] Irrational asymptotic behaviour of Castelnuovo–Mumford regularity, J. Reine Angew. Math., Volume 522 (2000), pp. 93-103 | MR | Zbl
[22] Asymptotic invariants of base loci, Ann. Inst. Fourier, Volume 56 (2006) no. 6, pp. 1701-1734 | Numdam | MR | Zbl
[23] Continuity of plurisubharmonic envelopes in non-archimedean geometry and test ideals, Ann. Inst. Fourier, Volume 69 (2019) no. 5, pp. 2331-2376 | DOI | Numdam | MR | Zbl
[24] On Zhang’s semipositive metrics, Doc. Math., Volume 24 (2019), pp. 331-372 | DOI | MR | Zbl
[25] Local and canonical heights of subvarieties, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 2 (2003) no. 4, pp. 711-760 | Numdam | MR | Zbl
[26] A guide to tropicalizations, Algebraic and combinatorial aspects of tropical geometry (Contemporary Mathematics), Volume 589, American Mathematical Society, 2013, pp. 125-189 | DOI | MR | Zbl
[27] Tropical and non-Archimedean Monge–Ampère equations for a class of Calabi–Yau hypersurfaces, Adv. Math., Volume 439 (2024), 109494, 42 pages | Zbl
[28] Automatic continuity of concave functions, Proc. Am. Math. Soc., Volume 103 (1988) no. 4, pp. 1196-1200 | DOI | MR | Zbl
[29] Valuations and asymptotic invariants for sequences of ideals, Ann. Inst. Fourier, Volume 62 (2012) no. 6, pp. 2145-2209 | DOI | Numdam | MR | Zbl
[30] Zariski decomposition of -divisors, Math. Z., Volume 273 (2013) no. 1-2, pp. 427-436 | DOI | MR | Zbl
[31] The complex Monge–Ampère equation, Acta Math., Volume 180 (1998) no. 1, pp. 69-117 | DOI | Zbl
[32] Affine structures and non-Archimedean analytic spaces, The unity of mathematics (Progress in Mathematics), Volume 244, Birkhäuser, 2006, pp. 321-385 | DOI | MR | Zbl
[33] Non-Archimedean Kähler geometry (unpublished)
[34] Positivity in algebraic geometry. I. Classical setting: Line bundles and linear series, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 48, Springer, 2014, pp. 1729-1741
[35] The diminished base locus is not always closed, Compos. Math., Volume 150 (2014) no. 10, pp. 1729-1741 | DOI | MR | Zbl
[36] Metric SYZ conjecture and non-archimedean geometry, Duke Math. J., Volume 172 (2023) no. 17, pp. 3227-3255 | MR | Zbl
[37] Metric SYZ conjecture for certain toric Fano hypersurfaces, Camb. J. Math., Volume 12 (2024) no. 1, pp. 223-252 | MR | Zbl
[38] Rational singularities with applications to algebraic surfaces and unique factorization, Publ. Math., Inst. Hautes Étud. Sci., Volume 36 (1969), pp. 195-279 | DOI | Numdam | Zbl
[39] Weight functions on non-archimedean analytic spaces and the Kontsevich–Soibelman skeleton, Algebr. Geom., Volume 2 (2015) no. 3, pp. 365-404 | DOI | MR | Zbl
[40] Zariski-decomposition and abundance, MSJ Memoirs, 14, Mathematical Society of Japan, 2004
[41] La décomposition de Zariski : une approche valuative, Ph. D. Thesis, Sorbonne Université (2021)
[42] Théorie du potentiel sur les courbes en géométrie analytique non archimédienne. Applications à la théorie d’Arakelov, Ph. D. Thesis, Université de Rennes I (2005) (available at http://tel.archives-ouvertes.fr/docs/00/04/87/50/PDF/tel-00010990.pdf)
[43] On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation, Commun. Pure Appl. Math., Volume 31 (1978), pp. 339-411 | Zbl
[44] The arithmetic Hodge Theorem for adelic line bundles, Math. Ann., Volume 367 (2017) no. 3-4, pp. 1123-1171 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique