[Déformations formelles de l’algèbre des formes de Jacobi et crochets de Rankin–Cohen]
Ce travail est consacré aux propriétés algébriques et arithmétiques des crochets de Rankin–Cohen permettant de les définir et de les étudier dans plusieurs situations naturelles de la théorie des nombres. Il se concentre sur la propriété qu’ont ces crochets d’être des déformations formelles des algèbres sur lesquelles ils sont définis, avec des questions connexes sur les méthodes de restriction-extension. Les résultats algébriques généraux développés ici sont appliqués à l’étude des déformations formelles de l’algèbre des formes de Jacobi faibles et leur relation avec les crochets de Rankin–Cohen pour les formes modulaires et quasimodulaires.
This work is devoted to the algebraic and arithmetic properties of Rankin–Cohen brackets allowing to define and study them in several natural situations of number theory. It focuses on the property of these brackets to be formal deformations of the algebras on which they are defined, with related questions on restriction-extension methods. The general algebraic results developed here are applied to the study of formal deformations of the algebra of weak Jacobi forms and their relation with the Rankin–Cohen brackets on modular and quasimodular forms.
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.193
YoungJu Choie 1 ; François Dumas 2 ; François Martin 2 ; Emmanuel Royer 2
@article{CRMATH_2021__359_4_505_0, author = {YoungJu Choie and Fran\c{c}ois Dumas and Fran\c{c}ois Martin and Emmanuel Royer}, title = {Formal deformations of the algebra of {Jacobi} forms and {Rankin{\textendash}Cohen} brackets}, journal = {Comptes Rendus. Math\'ematique}, pages = {505--521}, publisher = {Acad\'emie des sciences, Paris}, volume = {359}, number = {4}, year = {2021}, doi = {10.5802/crmath.193}, zbl = {07362171}, language = {en}, }
TY - JOUR AU - YoungJu Choie AU - François Dumas AU - François Martin AU - Emmanuel Royer TI - Formal deformations of the algebra of Jacobi forms and Rankin–Cohen brackets JO - Comptes Rendus. Mathématique PY - 2021 SP - 505 EP - 521 VL - 359 IS - 4 PB - Académie des sciences, Paris DO - 10.5802/crmath.193 LA - en ID - CRMATH_2021__359_4_505_0 ER -
%0 Journal Article %A YoungJu Choie %A François Dumas %A François Martin %A Emmanuel Royer %T Formal deformations of the algebra of Jacobi forms and Rankin–Cohen brackets %J Comptes Rendus. Mathématique %D 2021 %P 505-521 %V 359 %N 4 %I Académie des sciences, Paris %R 10.5802/crmath.193 %G en %F CRMATH_2021__359_4_505_0
YoungJu Choie; François Dumas; François Martin; Emmanuel Royer. Formal deformations of the algebra of Jacobi forms and Rankin–Cohen brackets. Comptes Rendus. Mathématique, Volume 359 (2021) no. 4, pp. 505-521. doi : 10.5802/crmath.193. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.193/
[1] Rankin–Cohen brackets and formal quantization, Adv. Math., Volume 212 (2007) no. 1, pp. 293-314 | DOI | MR | Zbl
[2] A derivation on Jacobi forms: Oberdieck derivation (Unpublished note. Available at https://hal.archives-ouvertes.fr/hal-03132764) | Zbl
[3] Rankin–Cohen operators for Jacobi and Siegel forms, J. Number Theory, Volume 68 (1998) no. 2, pp. 160-177 | DOI | MR | Zbl
[4] Jacobi forms and generalized RC-algebras, Rocky Mt. J. Math., Volume 31 (2001) no. 4, pp. 1265-1275 | DOI | MR | Zbl
[5] Automorphic pseudodifferential operators, Algebraic aspects of integrable systems (Progress in Nonlinear Differential Equations and their Applications), Volume 26, Birkhäuser, 1997, pp. 17-47 | DOI | MR | Zbl
[6] Rankin–Cohen brackets and the Hopf algebra of transverse geometry, Mosc. Math. J., Volume 4 (2004) no. 1, pp. 111-130 | DOI | MR | Zbl
[7] Ring structures for holomorphic discrete series and Rankin–Cohen brackets, J. Lie Theory, Volume 17 (2007) no. 2, pp. 283-305 | MR | Zbl
[8] Poisson structures and star products on quasimodular forms, Algebra Number Theory, Volume 8 (2014) no. 5, pp. 1127-1149 | DOI | MR | Zbl
[9] The theory of Jacobi forms, Progress in Mathematics, 55, Birkhäuser, 1985, v+148 pages | DOI | MR | Zbl
[10] The Lie theory of the Rankin–Cohen brackets and allied bi-differential operators, Adv. Math., Volume 207 (2006) no. 2, pp. 484-531 | DOI | MR | Zbl
[11] Differential symmetry breaking operators: II. Rankin–Cohen operators for symmetric pairs, Sel. Math., New Ser., Volume 22 (2016) no. 2, pp. 847-911 | DOI | MR | Zbl
[12] Poisson structures, Grundlehren der Mathematischen Wissenschaften, 347, Springer, 2013, xxiv+461 pages | DOI | MR | Zbl
[13] Formes modulaires et périodes, Formes modulaires et transcendance (Séminaires et Congrès), Volume 12, Société Mathématique de France, 2005, pp. 1-117 | MR | Zbl
[14] A Serre derivative for even weight Jacobi Forms (2014) (https://arxiv.org/abs/1209.5628)
[15] Deformation quantizations of the Poisson algebra of Laurent polynomials, Lett. Math. Phys., Volume 46 (1998) no. 2, pp. 171-180 | DOI | MR | Zbl
[16] Exotic deformation quantization, J. Differ. Geom., Volume 45 (1997) no. 2, pp. 390-406 | MR | Zbl
[17] Generalized transvectants-Rankin–Cohen brackets, Lett. Math. Phys., Volume 63 (2003) no. 1, pp. 19-28 | DOI | MR | Zbl
[18] Rankin–Cohen brackets and associativity, Lett. Math. Phys., Volume 85 (2008) no. 2-3, pp. 195-202 | DOI | MR | Zbl
[19] A generating function for Rankin–Cohen brackets, Lett. Math. Phys., Volume 108 (2018) no. 12, pp. 2627-2633 | DOI | MR | Zbl
[20] Quasimodular forms: an introduction, Ann. Math. Blaise Pascal, Volume 19 (2012) no. 2, pp. 297-306 | DOI | Numdam | MR | Zbl
[21] Algebras of symbols and modular forms, J. Anal. Math., Volume 68 (1996), pp. 121-143 | DOI | MR | Zbl
[22] Autour des déformations de Rankin–Cohen, Ph. D. Thesis, École Polytechnique, Paris (2007) | Zbl
[23] Modular forms and differential operators, Proc. Indian Acad. Sci., Math. Sci., Volume 104 (1994) no. 1, pp. 57-75 (K. G. Ramanathan memorial issue) | DOI | MR | Zbl
[24] Elliptic modular forms and their applications, The 1-2-3 of modular forms (Universitext), Springer, 2008, pp. 1-103 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique