Comptes Rendus
Motility-induced phase separation and coarsening in active matter
[Séparation de phase induite par la motilité et coarsening dans la matière active]
Comptes Rendus. Physique, Volume 16 (2015) no. 3, pp. 316-331.

Les systèmes actifs, ou la matière active, sont des systèmes autonomes qui vivent, ou fonctionnent, loin de l'équilibre – un exemple paradigmatique auquel nous nous intéressons ici est fourni par une suspension de particules auto-motiles. Les systèmes actifs sont loin de l'équilibre parce que leurs constituants microscopiques consomment constamment de l'énergie tirée de l'environnement pour pouvoir fonctionner, par exemple pour se propulser eux-mêmes. La nature de « non-équilibre » de la matière active conduit à une variété de phénomènes surprenants non triviaux. Un important d'entre eux, qui a récemment fait l'objet d'un intérêt intense parmi les physiciens de la biologie et de la matière molle, est ce qu'on dénomme « séparation de phases induite par la motilité », dans laquelle des particules autopropulsées s'accumulent en clusters en l'absence de toute interaction attractive explicite entre eux. Nous passons en revue ici la physique de la séparation induite par la motilité, et discutons ce phénomène dans le cadre de la physique classique de la séparation de phases et du coarsening. Nous discutons aussi des théories sur les colonies bactériennes dans lesquelles le coarsening peut être arrêté. La plus grande partie de ce travail se concentre sur le cas des particules run-and-tumble et des particules en mouvement brownien actif en l'absence d'interactions hydrodynamiques influencées par le solvant – nous discuterons brièvement leur rôle à la fin, qui n'est pour l'heure pas complètement compris dans ce contexte.

Active systems, or active matter, are self-driven systems that live, or function, far from equilibrium – a paradigmatic example that we focus on here is provided by a suspension of self-motile particles. Active systems are far from equilibrium because their microscopic constituents constantly consume energy from the environment in order to do work, for instance to propel themselves. The non-equilibrium nature of active matter leads to a variety of non-trivial intriguing phenomena. An important one, which has recently been the subject of intense interest among biological and soft matter physicists, is that of the so-called “motility-induced phase separation”, whereby self-propelled particles accumulate into clusters in the absence of any explicit attractive interactions between them. Here we review the physics of motility-induced phase separation, and discuss this phenomenon within the framework of the classic physics of phase separation and coarsening. We also discuss theories for bacterial colonies where coarsening may be arrested. Most of this work will focus on the case of run-and-tumble and active Brownian particles in the absence of solvent-mediated hydrodynamic interactions – we will briefly discuss at the end their role, which is not currently fully understood in this context.

Publié le :
DOI : 10.1016/j.crhy.2015.05.001
Keywords: Active matter, Phase separation, Pattern formation, Self-propelled particles
Mot clés : Matière active, Séparation de phases, Particules autopropulsées
Giuseppe Gonnella 1 ; Davide Marenduzzo 2 ; Antonio Suma 3 ; Adriano Tiribocchi 4

1 Dipartimento di Fisica, Università di Bari and INFN, Sezione di Bari, via Amendola 173, 70126 Bari, Italy
2 SUPA, School of Physics, University of Edinburgh, Edinburgh EH9 3JZ, UK
3 SISSA – Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, 34136 Trieste Italy
4 Dipartimento di Fisica e Astronomia, Università di Padova, via Marzolo 8, 70126 Bari, Italy
@article{CRPHYS_2015__16_3_316_0,
     author = {Giuseppe Gonnella and Davide Marenduzzo and Antonio Suma and Adriano Tiribocchi},
     title = {Motility-induced phase separation and coarsening in active matter},
     journal = {Comptes Rendus. Physique},
     pages = {316--331},
     publisher = {Elsevier},
     volume = {16},
     number = {3},
     year = {2015},
     doi = {10.1016/j.crhy.2015.05.001},
     language = {en},
}
TY  - JOUR
AU  - Giuseppe Gonnella
AU  - Davide Marenduzzo
AU  - Antonio Suma
AU  - Adriano Tiribocchi
TI  - Motility-induced phase separation and coarsening in active matter
JO  - Comptes Rendus. Physique
PY  - 2015
SP  - 316
EP  - 331
VL  - 16
IS  - 3
PB  - Elsevier
DO  - 10.1016/j.crhy.2015.05.001
LA  - en
ID  - CRPHYS_2015__16_3_316_0
ER  - 
%0 Journal Article
%A Giuseppe Gonnella
%A Davide Marenduzzo
%A Antonio Suma
%A Adriano Tiribocchi
%T Motility-induced phase separation and coarsening in active matter
%J Comptes Rendus. Physique
%D 2015
%P 316-331
%V 16
%N 3
%I Elsevier
%R 10.1016/j.crhy.2015.05.001
%G en
%F CRPHYS_2015__16_3_316_0
Giuseppe Gonnella; Davide Marenduzzo; Antonio Suma; Adriano Tiribocchi. Motility-induced phase separation and coarsening in active matter. Comptes Rendus. Physique, Volume 16 (2015) no. 3, pp. 316-331. doi : 10.1016/j.crhy.2015.05.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.05.001/

[1] T. Vicsek; A. Czirók; E. Ben-Jacob; I. Cohen; O. Shochet Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., Volume 75 (1995), pp. 1226-1229

[2] F. Schweitzer; W. Ebeling; B. Tilch Complex motion of Brownian particles with energy depots, Phys. Rev. Lett., Volume 80 (1998), pp. 5044-5047

[3] S. Ramaswamy The mechanics and statistics of active matter, Annu. Rev. Condens. Matter Phys., Volume 1 (2010), p. 323

[4] J. Toner; Y. Tu; S. Ramaswamy Hydrodynamics and phases of flocks, Ann. Phys., Volume 318 (2005), p. 170

[5] D.A. Fletcher; P.L. Geissler Active biological materials, Annu. Rev. Phys. Chem., Volume 60 (2009), p. 469

[6] G.I. Menon Active matter, Rheology of Complex Fluids, 2010, pp. 193-218

[7] M.E. Cates Diffusive transport without detailed balance in motile bacteria, Rep. Prog. Phys., Volume 75 (2012), p. 042601

[8] T. Vicsek; A. Zafeiris Collective motion, Phys. Rep., Volume 517 (2012), p. 71

[9] M.C. Marchetti; J.F. Joanny; S. Ramaswamy; T.B. Liverpool; J. Prost; M. Rao; R.A. Simha Hydrodynamics of soft active matter, Rev. Mod. Phys., Volume 85 (2013), p. 1143

[10] G. de Magistris; D. Marenduzzo An introduction to the physics of active matter, Physica A, Volume 418 (2015), p. 65

[11] J. Elgeti; R.G. Winkler; G. Gompper Physics of microswimmers – single particle motion and collective behavior | arXiv

[12] A. Walther; A.H. Müller Janus particles: synthesis, self-assembly, physical properties, and applications, Chem. Rev., Volume 113 (2013), pp. 5194-5261

[13] W.F. Paxton; K.C. Kistler; C.C. Olmeda; A. Sen; S.K.S. Angelo; Y. Cao; T.E. Mallouk; P.E. Lammert; V.H. Crespi Catalytic nanomotors: autonomous movement of striped nanorods, J. Am. Chem. Soc., Volume 126 (2004), p. 13424

[14] W.F. Paxton; S. Sundararajan; A. Sen; T.E. Mallouk Chemical locomotion, Angew. Chem., Int. Ed., Volume 45 (2006), p. 5420

[15] L. Hong; S. Jiang; S. Granick Simple method to produce Janus colloidal particles in large quantity, Langmuir, Volume 22 (2006), p. 9495

[16] R. Howse; R.A.L. Jones; A.J. Ryan; T. Gough; R. Vafabakhsh; R. Golestanian Self-motile colloidal particles: from directed propulsion to random walk, Phys. Rev. Lett., Volume 99 (2007), p. 048102

[17] R. Golestanian; T. Liverpool; A. Ajdari Designing phoretic micro- and nano-swimmers, New J. Phys., Volume 9 (2007), p. 126

[18] J. Palacci; C. Cottin-Bizonne; C. Ybert; L. Bocquet Sedimentation and effective temperature of active colloidal suspensions, Phys. Rev. Lett., Volume 105 (2010), p. 088304

[19] J. Elgeti; G. Gompper Self-propelled rods near surfaces, Europhys. Lett., Volume 85 (2009), p. 38002

[20] A.P. Berke; L. Turner; H.C. Berg; E. Lauga Hydrodynamic attraction of swimming microorganisms by surfaces, Phys. Rev. Lett., Volume 101 (2013), p. 038102

[21] J. Tailleur; M.E. Cates Sedimentation, trapping, and rectification of dilute bacteria, Europhys. Lett., Volume 86 (2009), p. 60002

[22] P. Galajda; J. Keymer; P. Chaikin; R. Austin A wall of funnels concentrates swimming bacteria, J. Bacteriol., Volume 189 (2007), p. 8704

[23] D. Chen; A. Lau; L. Hough; M. Islam; M. Goulian; T. Lubensky; A. Yodh Fluctuations and rheology in active bacterial suspensions, Phys. Rev. Lett., Volume 99 (2007), p. 148302

[24] X.-L. Wu; A. Libchaber Particle diffusion in a quasi-two-dimensional bacterial bath, Phys. Rev. Lett., Volume 84 (2000), pp. 3017-3020

[25] K.C. Leptos; J. Guasto; J. Gollub; A.I. Pesci; R. Goldstein Dynamics of enhanced tracer diffusion in suspensions of swimming eukaryotic microorganisms, Phys. Rev. Lett., Volume 103 (2009), p. 198103

[26] T. Kasyap; D. Koch; M. Wu Hydrodynamic tracer diffusion in suspensions of swimming bacteria, Phys. Fluids, Volume 26 (2014), p. 081901

[27] D. Pushkin; J. Yeomans Stirring by swimmers in confined microenvironments, J. Stat. Mech. (2014), p. P04030

[28] A. Morozov; D. Marenduzzo Enhanced diffusion of tracer particles in dilute bacterial suspensions, Soft Matter, Volume 10 (2014), p. 2748

[29] C. Valeriani; M. Li; J. Novosel; J. Arlt; D. Marenduzzo Colloids in a bacterial bath: simulations and experiments, Soft Matter, Volume 7 (2011) no. 11, pp. 5228-5238

[30] L.F. Cugliandolo The effective temperature, J. Phys. A, Volume 44 (2011) no. 48, p. 483001

[31] D. Loi; S. Mossa; L.F. Cugliandolo Effective temperature of active matter, Phys. Rev. E, Volume 77 (2008), p. 051111

[32] D. Loi; S. Mossa; L.F. Cugliandolo Effective temperature of active complex matter, Soft Matter, Volume 7 (2011), pp. 3726-3729

[33] D. Loi; S. Mossa; L.F. Cugliandolo Non-conservative forces and effective temperatures in active polymers, Soft Matter, Volume 7 (2011), pp. 10193-10209

[34] A. Suma; G. Gonnella; G. Laghezza; A. Lamura; A. Mossa; L.F. Cugliandolo Dynamics of a homogeneous active dumbbell system, Phys. Rev. E, Volume 90 (2014), p. 052130

[35] N. Mendelson; A. Bourque; K. Wilkening; K. Anderson; J. Watkins Organized cell swimming motions in bacillus subtilis colonies: patterns of short-lived whirls and jets, J. Bacteriol., Volume 181 (1999), p. 600

[36] C. Dombrowski; L. Cisneros; S. Chatkaew; R. Goldstein; J. Kessler Self-concentration and large-scale coherence in bacterial dynamics, Phys. Rev. Lett., Volume 93 (2004), p. 098103

[37] J.P. Hernández-Ortíz; C.G. Stoltz; M.D. Graham Transport and collective dynamics in suspensions of confined swimming particles, Phys. Rev. Lett., Volume 95 (2005), p. 204501

[38] I. Riedel; K. Kruse; J. Howard A self-organized vortex array of hydrodynamically entrained sperm cells, Science, Volume 309 (2005), p. 300

[39] A. Sokolov; I. Aranson; J. Kessler; R. Goldstein Concentration dependence of the collective dynamics of swimming bacteria, Phys. Rev. Lett., Volume 98 (2007), p. 158102

[40] H. Zhang; A. Be'er; R. Smith; E.-L. Florin; H. Swinney Swarming dynamics in bacterial colonies, Europhys. Lett., Volume 87 (2009), p. 48011

[41] T. Liverpool; M. Marchetti Rheology of active filament solutions, Phys. Rev. Lett., Volume 97 (2006), p. 268101

[42] M.E. Cates; S.M. Fielding; D. Marenduzzo; E. Orlandini; J.M. Yeomans Shearing active gels close to the isotropic-nematic transition, Phys. Rev. Lett., Volume 101 (2008), p. 068102

[43] L. Giomi; M. Marchetti; T. Liverpool Complex spontaneous flows and concentration banding in active polar films, Phys. Rev. Lett., Volume 101 (2008), p. 198101

[44] G. Foffano; J. Lintuvuori; K. Stratford; M. Cates; D. Marenduzzo Colloids in active fluids: anomalous microrheology and negative drag, Phys. Rev. Lett., Volume 109 (2012), p. 028103

[45] S. Fielding; D. Marenduzzo; M. Cates Nonlinear dynamics and rheology of active fluids: simulations in two dimensions, Phys. Rev. E, Volume 83 (2010), p. 041910

[46] J. Tailleur; M.E. Cates Statistical mechanics of interacting run-and-tumble bacteria, Phys. Rev. Lett., Volume 100 (2008), p. 218103

[47] Y. Fily; M.C. Marchetti Athermal phase separation of self-propelled particles with no alignment, Phys. Rev. Lett., Volume 108 (2012), p. 235702

[48] Y. Fily; S. Henkes; M.C. Marchetti Freezing and phase separation of self-propelled disks, Soft Matter, Volume 10 (2014), p. 2132

[49] G.S. Redner; M.F. Hagan; A. Baskaran Reentrant phase behavior in active colloids with attraction, Phys. Rev. Lett., Volume 110 (2013), p. 055701

[50] J. Stenhammar; A. Tiribocchi; R.J. Allen; D. Marenduzzo; M.E. Cates Continuum theory of phase separation kinetics for active Brownian particles, Phys. Rev. Lett., Volume 111 (2013), p. 145702

[51] G. Gonnella; A. Lamura; A. Suma Phase segregation in a system of active dumbbells, Int. J. Mod. Phys. C, Volume 25 (2014), p. 1441004

[52] A. Suma; D. Marenduzzo; G. Gonnella; E. Orlandini Motility-induced phase separation in an active dumbbell fluid, Europhys. Lett., Volume 108 (2014), p. 56004

[53] D. Levis; L. Berthier Clustering and heterogeneous dynamics in a kinetic Monte Carlo model of self-propelled hard disks, Phys. Rev. E, Volume 89 (2014), p. 062301

[54] R. Wittkowski; A. Tiribocchi; J. Stenhammar; R. Allen; D. Marenduzzo; M. Cates Scalar ϕ4 field theory for active-particle phase separation, Nat. Commun., Volume 5 (2014), p. 4351

[55] I. Buttinoni; J. Bialké; F. Kümmel; H. Löwen; C. Bechinger; T. Speck Dynamical clustering and phase separation in suspensions of self-propelled colloidal particles, Phys. Rev. Lett., Volume 110 (2013), p. 238301

[56] J. Palacci; B. Abecassis; C. Cottin-Bizonne et al. Colloidal motility and pattern formation under rectified diffusiophoresis, Phys. Rev. Lett., Volume 104 (2010), p. 138302

[57] J. Palacci; S. Sacanna; A. Steiberg et al. Living crystals of light-activated colloidal surfers, Science, Volume 339 (2013), p. 936

[58] J. Palacci; S. Sacanna; S.-H. Kim et al. Light-activated self-propelled colloids, Philos. Trans. R. Soc. Lond. A, Volume 372 (2014), p. 20130372

[59] F. Peruani; J. Starruss; V. Jakovljevic; L. Sogaard-Andersen; A. Deutsch; M. Bär Collective motion and nonequilibrium cluster formation in colonies of gliding bacteria, Phys. Rev. Lett., Volume 108 (2012), p. 098102

[60] S.R. McCandlish; A. Baskaran; M.F. Hagan Spontaneous segregation of self-propelled particles with different motilities, Soft Matter, Volume 8 (2012), p. 2527

[61] H.H. Wensink; J. Dunkel; S. Heindereich; K. Drescher; R. Goldstein; H. Lowen; J. Yeomans Meso-scale turbulence in living fluids, Proc. Natl. Acad. Sci. USA, Volume 109 (2012), p. 14308

[62] M.E. Cates; D. Marenduzzo; I. Pagonabarraga; J. Tailleur Arrested phase separation in reproducing bacteria creates a generic route to pattern formation, Proc. Natl. Acad. Sci. USA, Volume 107 (2010), p. 11715

[63] J. Murray Mathematical Biology, vol. 2, Springer-Verlag, New York, 2003

[64] A. Evans; T. Ishikawa; T. Yamaguchi; E. Lauga Orientational order in concentrated suspensions of spherical microswimmers, Phys. Fluids, Volume 23 (2011), p. 111702

[65] F. Alarcón; I. Pagonabarraga Spontaneous aggregation and global polar ordering in squirmer suspensions, J. Mol. Liq., Volume 185 (2013), p. 56

[66] R. Matas-Navarro; R. Golestanian; T. Liverpool; S. Fielding Hydrodynamics suppression of phase separation in active suspensions, Phys. Rev. E, Volume 90 (2014), p. 032304

[67] A. Zöttl; H. Stark Hydrodynamics determines collective motion and phase behavior of active colloids in quasi-two-dimensional confinement, Phys. Rev. Lett., Volume 112 (2014), p. 118101

[68] M. Schnitzer Theory of continuum random walks and application to chemotaxis, Phys. Rev. E, Volume 48 (1993), p. 2553

[69] M.E. Cates; J. Tailleur When are active Brownian particles and run-and-tumble particles equivalent? Consequences for motility-induced phase separation, Europhys. Lett., Volume 101 (2013), p. 20010

[70] S. Chapman; T. Cowling The Mathematical Theory of Non-Uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases, Cambridge Mathematical Library, Cambridge University Press, 1970

[71] P. Chaikin; T.C. Lubensky Principles of Condensed Matter Physics, Cambridge University Press, Cambridge, UK, 1995

[72] J. Stenhammar; D. Marenduzzo; R.J. Allen; M.E. Cates Phase behaviour of active Brownian particles: the role of dimensionality, Soft Matter, Volume 10 (2014), p. 1489

[73] L.F. Cugliandolo; G. Gonnella; A. Suma Rotational and translational diffusion in an interacting active dumbbell system | arXiv

[74] A.G. Thompson; J. Tailleur; M.E. Cates; R.A. Blythe Lattice models of nonequilibrium bacterial dynamics, J. Stat. Mech. (2011), p. P02029

[75] Y. Yang; V. Marceau; G. Gompper Swarm behavior of self-propelled rods and swimming flagella, Phys. Rev. E, Volume 82 (2010), p. 031904

[76] L.F. Cugliandolo; G. Gonnella; A. Suma Chaos Solitons Fractals (2015) (in press) | DOI

[77] F. Peruani; A. Deutsch; M. Bär Nonequilibrium clustering of self-propelled rods, Phys. Rev. E, Volume 74 (2006), p. 030904(R)

[78] Y. Yang; V. Marceau; G. Gompper Swarm behavior of self-propelled rods and swimming flagella, Phys. Rev. E, Volume 82 (2010) no. 3, p. 031904

[79] J. Schwarz-Linek; C. Valeriani; A. Cacciuto; M.E. Cates; D. Marenduzzo; A.N. Morozov; W.C.K. Poon Phase separation and rotor self-assembly in active particle suspensions, Proc. Natl. Acad. Sci., Volume 109 (2012), p. 4052

[80] H. Chaté; G. Grégoire Onset of collective and cohesive motion, Phys. Rev. Lett., Volume 92 (2004), p. 025702

[81] G. Baglietto; E. Albano Finite-size scaling analysis and dynamic study of the critical behavior of a model for the collective displacement of self-driven individuals, Phys. Rev. E, Volume 78 (2008), p. 021125

[82] H. Chaté; F. Ginelli; G. Grégoire; F. Raynaud Collective motion of self-propelled particles interacting without cohesion, Phys. Rev. E, Volume 77 (2008) no. 4, p. 046113

[83] F. Ginelli; F. Peruani; M. Bär; H. Chaté Phys. Rev. Lett., 104 (2010), p. 184502

[84] A.P. Solon; H. Chaté; J. Tailleur From phase to microphase separation in flocking models: the essential role of nonequilibrium fluctuations, Phys. Rev. Lett., Volume 114 (2015), p. 068101 | DOI

[85] H. Chaté; F. Ginelli; F. Peruani; G. Grégoire; F. Raynaud Modeling collective motion: variations on the Vicsek model, Eur. Phys. J. B, Volume 64 (2008), p. 451

[86] F. Farrell; M. Marchetti; D. Marenduzzo; J. Tailleur Pattern formation in self-propelled particles with density-dependent motility, Phys. Rev. Lett., Volume 108 (2012), p. 248101

[87] G. Saracco; G. Gonnella; D. Marenduzzo; E. Orlandini Shearing self-propelled suspensions: arrest of coarsening and suppression of giant density fluctuations, Phys. Rev. E, Volume 84 (2011) no. 3, p. 031930

[88] G.P. Saracco; G. Gonnella; D. Marenduzzo et al. Equilibrium and dynamical behavior in the Vicsek model for self-propelled particles under shear, Cent. Eur. J. Phys., Volume 10 ( Oct. 2012 ) no. 5, pp. 1109-1115

[89] L. Jibuti; L. Qi; C. Misbah; W. Zimmermann; S. Rafaï; P. Peyla Self-focusing and jet instability of a microswimmer suspension, Phys. Rev. E, Volume 90 (2014) no. 6, p. 063019

[90] M. Lighthill On the squirming motion of nearly spherical deformable bodies through liquids at very small Reynolds numbers, Commun. Pure Appl. Math., Volume 5 (1952), p. 109

[91] J. Blake A spherical envelope approach to ciliary propulsion, J. Fluid Mech., Volume 46 (1971), p. 199

[92] A. Erbe; M. Zientara; L. Baraban; C. Kreidler; P. Leiderer Various driving mechanisms for generating motion of colloidal particles, J. Phys. Condens. Matter, Volume 20 (2008), p. 404215

[93] E. Lauga; T. Powers The hydrodynamics of swimming microorganisms, Rep. Prog. Phys., Volume 72 (2009), p. 096601

[94] I. Götze; G. Gompper Mesoscale simulations of hydrodynamic squirmer interactions, Phys. Rev. E, Volume 82 (2010), p. 041921

[95] T. Ishikawa; M. Simmonds; T. Pedley Hydrodynamic interaction of two swimming model micro-organisms, J. Fluid Mech., Volume 568 (2006), p. 119

[96] T. Ishikawa; J. Locsei; T. Pedley Development of coherent structures in concentrated suspensions of swimming model micro-organisms, J. Fluid Mech., Volume 615 (2008), p. 401

[97] D. Saintillan; M. Shelley Instabilities, pattern formation, and mixing in active suspensions, Phys. Fluids, Volume 20 (2008), p. 123304

[98] A. Furukawa; D. Marenduzzo; M. Cates Activity-induced clustering in model dumbbell swimmers: the role of hydrodynamic interactions, Phys. Rev. E, Volume 90 (2014), p. 022303

[99] M.E. Cates; J. Tailleur Motility-induced phase separation, Annu. Rev. Condens. Matter Phys., Volume 6 (2015), p. 219

[100] I. Theurkauff; C. Cottin-Bizonne; J. Palacci; C. Ybert; L. Bocquet Dynamic clustering in active colloidal suspensions with chemical signaling | arXiv

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Active suspensions and their nonlinear models

David Saintillan; Michael J. Shelley

C. R. Phys (2013)


Collective behavior in out-of-equilibrium colloidal suspensions

Igor S. Aranson

C. R. Phys (2013)


Modelling and finite element simulation of multi-sphere swimmers

Luca Berti; Vincent Chabannes; Laetitia Giraldi; ...

C. R. Math (2021)