In this note we study the boundedness of Fourier multipliers of anharmonic oscillators, and as a consequence also of spectral multipliers, for the range . The underlying Fourier analysis is associated with the eigenfunctions of an anharmonic oscillator in some family of differential operators having derivatives of any order. Our analysis relies on a version of the classical Paley-type inequality, introduced by Hörmander, that we extend in our nonharmonic setting.
Dans cette note, nous étudions la - continuité des multiplicateurs de Fourier des oscillateurs anharmoniques, et par conséquent des multiplicateurs spectraux également, pour . L’analyse de Fourier sous-jacente est associée aux fonctions propres d’un oscillateur anharmonique dans certaines familles d’opérateurs différentiels ayant des dérivées d’ordre quelconque. Notre analyse s’appuie sur une version de l’inégalité classique de type Paley, introduite par Hörmander, que nous étendons dans notre cadre non harmonique.
Revised:
Accepted:
Published online:
Marianna Chatzakou 1; Vishvesh Kumar 1
@article{CRMATH_2022__360_G4_343_0, author = {Marianna Chatzakou and Vishvesh Kumar}, title = {$L^p$-$L^q$ {Boundedness} of {Spectral} {Multipliers} of the {Anharmonic} {Oscillator}}, journal = {Comptes Rendus. Math\'ematique}, pages = {343--347}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, year = {2022}, doi = {10.5802/crmath.290}, language = {en}, }
TY - JOUR AU - Marianna Chatzakou AU - Vishvesh Kumar TI - $L^p$-$L^q$ Boundedness of Spectral Multipliers of the Anharmonic Oscillator JO - Comptes Rendus. Mathématique PY - 2022 SP - 343 EP - 347 VL - 360 PB - Académie des sciences, Paris DO - 10.5802/crmath.290 LA - en ID - CRMATH_2022__360_G4_343_0 ER -
Marianna Chatzakou; Vishvesh Kumar. $L^p$-$L^q$ Boundedness of Spectral Multipliers of the Anharmonic Oscillator. Comptes Rendus. Mathématique, Volume 360 (2022), pp. 343-347. doi : 10.5802/crmath.290. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.290/
[1] Hardy–Littlewood–Paley inequalities and Fourier multipliers on , Stud. Math., Volume 236 (2016) no. 1, pp. 1-29 | DOI | MR | Zbl
[2] Hardy–Littlewood, Hausdorff–Young–Paley inequalities, and - Fourier multipliers on compact homogeneous manifolds, J. Math. Anal. Appl., Volume 479 (2019) no. 2, pp. 1519-1548 | DOI | MR | Zbl
[3] multipliers on locally compact groups, J. Funct. Anal., Volume 278 (2019) no. 3, 108324 | MR | Zbl
[4] Hölder estimates for pseudo-differential operators: sufficient conditions, Ann. Inst. Fourier, Volume 29 (1979) no. 3, pp. 239-260 | DOI | Zbl
[5] and -Variants of multiparameter Calderón–Zygmund theory, Trans. Am. Math. Soc., Volume 334 (1992) no. 2, pp. 719-747 | Zbl
[6] On a class of anharmonic oscillators (2020) (https://arxiv.org/abs/1811.12566v3, to appear in Journal de Mathématiques Pures et Appliquées)
[7] boundedness of Fourier multipliers associated with the anharmonic Oscillator (2020) (https://arxiv.org/abs/2004.07801v1)
[8] estimates for functions of theLaplace–Beltrami operator on noncompact symmetric spaces. I, Duke Math. J., Volume 72 (1993) no. 1, pp. 109-150 | Zbl
[9] Comportement asymptotique précise du spectre d’opérateurs globalement elliptiques dans , Goulaouic-Meyer-Schwartz Seminar, 1980–1981, École Polytech., Palaiseau, 1981, II | Zbl
[10] Estimates for translation invariant operators in spaces, Acta Math., Volume 104 (1960), pp. 93-140 | DOI | MR | Zbl
[11] On multipliers of Fourier integrals, Dokl. Akad. Nauk SSSR, Volume 109 (1956), pp. 73-84 | MR | Zbl
[12] Nonharmonic analysis of boundary value problems, Int. Math. Res. Not., Volume 12 (2016), pp. 3548-3615 | DOI | Zbl
[13] boundedness of pseudo-differential operators on smooth manifolds and its applications to nonlinear equations (2020) (https://arxiv.org/abs/2005.04936)
Cited by Sources:
Comments - Policy