Comptes Rendus
Complex analysis and geometry
New Properties of Multiplier Submodule Sheaves
Comptes Rendus. Mathématique, Volume 360 (2022), pp. 1205-1212.

In this note, we establish the strong openness and stability property of multiplier submodule sheaves associated to singular Nakano semi-positive metrics on holomorphic vector bundles, which generalizes the same properties for multiplier ideal sheaves associated to pseudo-effective line bundles.

Dans cette note, nous établissons la conjecture forte d’ouverture et la stabilité des faisceaux de sous-modules multiplicateurs associés aux métriques semi-positives de Nakano singulières sur les fibrés vectoriels holomorphes, ce qui généralise les mêmes propriétés pour les faisceaux d’idéaux multiplicateurs associés aux fibrés en droites pseudo-effectifs.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.334
Classification: 32U05, 32E10, 32L10, 32Q10, 14F18, 14C30, 53C55

Zhuo Liu 1, 2; Hui Yang 3, 2; Xiangyu Zhou 4

1 Institute of Mathematics, Academy of Mathematics and Systems Sciences, Chinese Academy of Sciences,Beijing 100190, P. R. China
2 School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
3 Institute of Mathematics, Academy of Mathematics and Systems Sciences, Chinese Academy of Sciences, Beijing 100190, P. R. China
4 Institute of Mathematics, Academy of Mathematics and Systems Sciences, Beijing 100190, P. R. China
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMATH_2022__360_G11_1205_0,
     author = {Zhuo Liu and Hui Yang and Xiangyu Zhou},
     title = {New {Properties} of {Multiplier} {Submodule} {Sheaves}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1205--1212},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {360},
     year = {2022},
     doi = {10.5802/crmath.334},
     language = {en},
}
TY  - JOUR
AU  - Zhuo Liu
AU  - Hui Yang
AU  - Xiangyu Zhou
TI  - New Properties of Multiplier Submodule Sheaves
JO  - Comptes Rendus. Mathématique
PY  - 2022
SP  - 1205
EP  - 1212
VL  - 360
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.334
LA  - en
ID  - CRMATH_2022__360_G11_1205_0
ER  - 
%0 Journal Article
%A Zhuo Liu
%A Hui Yang
%A Xiangyu Zhou
%T New Properties of Multiplier Submodule Sheaves
%J Comptes Rendus. Mathématique
%D 2022
%P 1205-1212
%V 360
%I Académie des sciences, Paris
%R 10.5802/crmath.334
%G en
%F CRMATH_2022__360_G11_1205_0
Zhuo Liu; Hui Yang; Xiangyu Zhou. New Properties of Multiplier Submodule Sheaves. Comptes Rendus. Mathématique, Volume 360 (2022), pp. 1205-1212. doi : 10.5802/crmath.334. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.334/

[1] Bo Berndtsson The openness conjecture and complex Brunn-Minkowski inequalities, Complex geometry and dynamics. The Abel symposium 2013, (John Erik Fornæss et al., eds.) (Abel Symposia), Volume 10, Springer, 2015, pp. 29-44 | DOI | MR | Zbl

[2] Mark Andrea A. de Cataldo Singular hermitian metrics on vector bundles, J. Reine Angew. Math., Volume 502 (1998), pp. 93-122 | MR | Zbl

[3] Jean-Pierre Demailly Multiplier ideal sheaves and analytic methods in algebraic geometry, School on Vanishing Theorems and Effective Results in Algebraic Geometry (ICTP Lecture Notes), Volume 6, The Abdus Salam International Centre for Theoretical Physics, 2001, pp. 1-148 | MR | Zbl

[4] Jean-Pierre Demailly; János Kollár Semi-continuity of complex singularity exponents and Kähler–Einstein metrics on Fano orbifolds, Ann. Sci. Éc. Norm. Supér., Volume 34 (2001) no. 4, pp. 525-556 | DOI | Numdam | Zbl

[5] Jean-Pierre Demailly; Thomas Peternell; Michael Schneider Pseudo-effective line bundles on compact Kähler manifolds, Int. J. Math., Volume 12 (2001) no. 6, pp. 689-741 | DOI | Zbl

[6] Fusheng Deng; Jiafu Ning; Zhiwei Wang; Xiangyu Zhou Positivity of holomorphic vector bundles in terms of L p -conditions of ¯ (2020) online published in Math. Ann. (2022), p. 1-33, https://arxiv.org/abs/2001.01762v1

[7] Charles Favre; Mattias Jonsson Valuations and multiplier ideals, J. Am. Math. Soc., Volume 18 (2005) no. 3, pp. 655-684 | DOI | MR | Zbl

[8] Qi’an Guan A sharp effectiveness result of Demailly’s strong openness conjecture, Adv. Math., Volume 348 (2019), pp. 51-80 | DOI | MR | Zbl

[9] Qi’an Guan; Zhenqian Li; Xiangyu Zhou Estimation of weighted L 2 norm related to Demailly’s strong openness conjecture (2016) (to appear in Chinese Annals of Math., Series B, https://arxiv.org/abs/1603.05733v1)

[10] Qi’an Guan; Xiangyu Zhou Effectiveness of Demailly’s strong openness conjecture and related problems, Invent. Math., Volume 202 (2015) no. 2, pp. 635-676 | DOI | MR | Zbl

[11] Qi’an Guan; Xiangyu Zhou A proof of Demailly’s strong openness conjecture, Ann. Math., Volume 182 (2015) no. 2, pp. 605-616 | DOI | MR | Zbl

[12] Pham Hoang Hiep The weighted log canonical threshold, C. R. Math. Acad. Sci. Paris, Volume 352 (2014) no. 4, pp. 283-288 | DOI | MR | Zbl

[13] Takahiro Inayama Nakano positivity of singular hermitian metrics and vanishing theorems of Demailly–Nadel–Nakano type, Algebr. Geom., Volume 9 (2022) no. 1, pp. 69-92 | DOI | MR | Zbl

[14] Mattias Jonsson; Mircea Mustaţă Valuations and asymptotic invariants for sequences of ideals, Ann. Inst. Fourier, Volume 62 (2012) no. 6, pp. 2145-2209 | DOI | Numdam | MR | Zbl

[15] László Lempert Modules of square integrable holomorphic germs, Analysis meets geometry. The Mikael Passare memorial volume (Trends in Mathematics), Springer, 2017, pp. 311-333 | DOI | Zbl

[16] Zhou Liu; Hui Yang; Xiangyu Zhou On the Multiplier Submodule Sheaves Associated to Singular Nakano Semi-positive Metrics (2021) (https://arxiv.org/abs/2111.13452)

[17] Hossein Raufi Singular hermitian metrics on holomorphic vector bundles, Ark. Mat., Volume 53 (2015) no. 2, pp. 359-382 | DOI | MR | Zbl

[18] William R. Wade The bounded convergence theorem, Am. Math. Mon., Volume 81 (1974) no. 4, pp. 387-389 | DOI | MR | Zbl

[19] Shing-Tung Yau On the pseudonorm project of birational classification of algebraic varieties, Geometry and analysis on manifolds (Progress in Mathematics), Volume 608, Springer, 2015, pp. 327-339 | Zbl

Cited by Sources:

Comments - Policy