We first present the natural definitions of the horizontal differential, the divergence (as an adjoint operator) and a -harmonic form on a Finsler manifold. Next, we prove a Hodge-type theorem for a Finsler manifold in the sense that a horizontal -form is harmonic if and only if the horizontal Laplacian vanishes. This viewpoint provides a new appropriate natural definition of harmonic vector fields in Finsler geometry. This approach leads to a Bochner–Yano type classification theorem based on the harmonic Ricci scalar. Finally, we show that a closed orientable Finsler manifold with a positive harmonic Ricci scalar has zero Betti number.
Nous présentons d’abord les définitions naturelles de la différentielle horizontale, de la divergence (comme opérateur adjoint) et d’une forme -harmonique sur une variété finslérienne. Ensuite, nous prouvons un théorème de type Hodge pour une variété finslérienne dans le sens où une -forme horizontale est harmonique si et seulement si le Laplacien horizontal est nul. Ce point de vue fournit une nouvelle définition naturelle appropriée des champs de vecteurs harmoniques en géométrie finslérienne. Cette méthode conduit à un théorème de classification de type Bochner–Yano basé sur le scalaire de Ricci harmonique. Enfin, nous montrons qu’une variété finslérienne fermée et orientable, avec un scalaire de Ricci harmonique positif, a un nombre de Betti nul.
Revised:
Accepted:
Published online:
Behroz Bidabad 1, 2; Mir Ahmad Mirshafeazadeh 3
@article{CRMATH_2022__360_G11_1193_0, author = {Behroz Bidabad and Mir Ahmad Mirshafeazadeh}, title = {Harmonic vector fields and the {Hodge} {Laplacian} operator on {Finsler} geometry}, journal = {Comptes Rendus. Math\'ematique}, pages = {1193--1204}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, year = {2022}, doi = {10.5802/crmath.287}, language = {en}, }
TY - JOUR AU - Behroz Bidabad AU - Mir Ahmad Mirshafeazadeh TI - Harmonic vector fields and the Hodge Laplacian operator on Finsler geometry JO - Comptes Rendus. Mathématique PY - 2022 SP - 1193 EP - 1204 VL - 360 PB - Académie des sciences, Paris DO - 10.5802/crmath.287 LA - en ID - CRMATH_2022__360_G11_1193_0 ER -
Behroz Bidabad; Mir Ahmad Mirshafeazadeh. Harmonic vector fields and the Hodge Laplacian operator on Finsler geometry. Comptes Rendus. Mathématique, Volume 360 (2022), pp. 1193-1204. doi : 10.5802/crmath.287. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.287/
[1] Initiation to global Finslerian geometry, North-Holland Mathematical Library, 68, Elsevier, 2006, 250 pages | Zbl
[2] An Introduction to Riemann–Finsler geometry, Graduate Texts in Mathematics, 200, Springer, 2000, 431 pages
[3] A Hodge decomposition theorem for Finsler spaces, C. R. Math. Acad. Sci. Paris, Volume 323 (1996) no. 1, pp. 51-56 | MR | Zbl
[4] Valeurs propres d’opérateurs différentiels du second ordre sur une variété de Finsler, Bull. Sci. Math., Volume 122 (1998) no. 5, pp. 399-408 | DOI | Zbl
[5] On Sobolev spaces and density theorems on Finsler manifolds, AUT J. Math. Comput., Volume 1 (2020) no. 1, pp. 37-45
[6] Vector fields and Ricci curvature, Bull. Am. Math. Soc., Volume 52 (1946), pp. 776-797 | DOI | MR | Zbl
[7] Analysis Now, Springer, 1994
[8] Variation problems and E-valued horizontal harmonic forms on Finsler manifolds, Publ. Math., Volume 82 (2013) no. 2, pp. 325-339 | MR | Zbl
[9] Harmonic vector fields on Landsberg manifolds, C. R. Math. Acad. Sci. Paris, Volume 352 (2014) no. 9, pp. 737-741 | DOI | MR | Zbl
[10] Harmonic vector fields on Finsler manifolds, C. R. Math. Acad. Sci. Paris, Volume 354 (2016) no. 1, pp. 101-106 | DOI | MR | Zbl
[11] Introduction to modern Finsler geometry, Higher Education Press, 2016, 393 pages | DOI
[12] On harmonic and Killing vector fields, Ann. Math., Volume 55 (1952), pp. 38-45 | DOI | MR | Zbl
[13] Integral Formulas in Riemannian Geometry, Pure and Applied Mathematics, 1, Marcel Dekker, 1970
[14] Horizontal Laplace operator in real Finsler vector bundles, Acta Math. Sci., Volume 28 (2008) no. 1, pp. 128-140 | DOI | MR | Zbl
Cited by Sources:
Comments - Policy