Comptes Rendus
Harmonic analysis, Geometry and Topology
Harmonic vector fields and the Hodge Laplacian operator on Finsler geometry
Comptes Rendus. Mathématique, Volume 360 (2022), pp. 1193-1204.

We first present the natural definitions of the horizontal differential, the divergence (as an adjoint operator) and a p-harmonic form on a Finsler manifold. Next, we prove a Hodge-type theorem for a Finsler manifold in the sense that a horizontal p-form is harmonic if and only if the horizontal Laplacian vanishes. This viewpoint provides a new appropriate natural definition of harmonic vector fields in Finsler geometry. This approach leads to a Bochner–Yano type classification theorem based on the harmonic Ricci scalar. Finally, we show that a closed orientable Finsler manifold with a positive harmonic Ricci scalar has zero Betti number.

Nous présentons d’abord les définitions naturelles de la différentielle horizontale, de la divergence (comme opérateur adjoint) et d’une forme p-harmonique sur une variété finslérienne. Ensuite, nous prouvons un théorème de type Hodge pour une variété finslérienne dans le sens où une p-forme horizontale est harmonique si et seulement si le Laplacien horizontal est nul. Ce point de vue fournit une nouvelle définition naturelle appropriée des champs de vecteurs harmoniques en géométrie finslérienne. Cette méthode conduit à un théorème de classification de type Bochner–Yano basé sur le scalaire de Ricci harmonique. Enfin, nous montrons qu’une variété finslérienne fermée et orientable, avec un scalaire de Ricci harmonique positif, a un nombre de Betti nul.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.287
Classification: 58B20

Behroz Bidabad 1, 2; Mir Ahmad Mirshafeazadeh 3

1 Department of Mathematics and Computer Sciences, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Ave. 15914 Tehran, Iran
2 Institut de Mathematique de Toulouse, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse, France
3 Department of Mathematics, Shabestar Branch, Islamic Azad University, Shabestar, Iran
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMATH_2022__360_G11_1193_0,
     author = {Behroz Bidabad and Mir Ahmad Mirshafeazadeh},
     title = {Harmonic vector fields and the {Hodge} {Laplacian} operator on {Finsler} geometry},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1193--1204},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {360},
     year = {2022},
     doi = {10.5802/crmath.287},
     language = {en},
}
TY  - JOUR
AU  - Behroz Bidabad
AU  - Mir Ahmad Mirshafeazadeh
TI  - Harmonic vector fields and the Hodge Laplacian operator on Finsler geometry
JO  - Comptes Rendus. Mathématique
PY  - 2022
SP  - 1193
EP  - 1204
VL  - 360
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.287
LA  - en
ID  - CRMATH_2022__360_G11_1193_0
ER  - 
%0 Journal Article
%A Behroz Bidabad
%A Mir Ahmad Mirshafeazadeh
%T Harmonic vector fields and the Hodge Laplacian operator on Finsler geometry
%J Comptes Rendus. Mathématique
%D 2022
%P 1193-1204
%V 360
%I Académie des sciences, Paris
%R 10.5802/crmath.287
%G en
%F CRMATH_2022__360_G11_1193_0
Behroz Bidabad; Mir Ahmad Mirshafeazadeh. Harmonic vector fields and the Hodge Laplacian operator on Finsler geometry. Comptes Rendus. Mathématique, Volume 360 (2022), pp. 1193-1204. doi : 10.5802/crmath.287. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.287/

[1] Hassan Akbar-Zadeh Initiation to global Finslerian geometry, North-Holland Mathematical Library, 68, Elsevier, 2006, 250 pages | Zbl

[2] David Bao; Shiing-Shen Chern; Zhongmin Shen An Introduction to Riemann–Finsler geometry, Graduate Texts in Mathematics, 200, Springer, 2000, 431 pages

[3] David Bao; Brad Lackey A Hodge decomposition theorem for Finsler spaces, C. R. Math. Acad. Sci. Paris, Volume 323 (1996) no. 1, pp. 51-56 | MR | Zbl

[4] Christine Bertrand; Antoine Rauzy Valeurs propres d’opérateurs différentiels du second ordre sur une variété de Finsler, Bull. Sci. Math., Volume 122 (1998) no. 5, pp. 399-408 | DOI | Zbl

[5] Behroz Bidabad; Alireza Shahi On Sobolev spaces and density theorems on Finsler manifolds, AUT J. Math. Comput., Volume 1 (2020) no. 1, pp. 37-45

[6] Salomon Bochner Vector fields and Ricci curvature, Bull. Am. Math. Soc., Volume 52 (1946), pp. 776-797 | DOI | MR | Zbl

[7] Gert K. Pedersen Analysis Now, Springer, 1994

[8] He Qun; Zhao Wei Variation problems and E-valued horizontal harmonic forms on Finsler manifolds, Publ. Math., Volume 82 (2013) no. 2, pp. 325-339 | MR | Zbl

[9] Alireza Shahi; Behroz Bidabad Harmonic vector fields on Landsberg manifolds, C. R. Math. Acad. Sci. Paris, Volume 352 (2014) no. 9, pp. 737-741 | DOI | MR | Zbl

[10] Alireza Shahi; Behroz Bidabad Harmonic vector fields on Finsler manifolds, C. R. Math. Acad. Sci. Paris, Volume 354 (2016) no. 1, pp. 101-106 | DOI | MR | Zbl

[11] Yi-Bing Shen; Zhongmin Shen Introduction to modern Finsler geometry, Higher Education Press, 2016, 393 pages | DOI

[12] Kentaro Yano On harmonic and Killing vector fields, Ann. Math., Volume 55 (1952), pp. 38-45 | DOI | MR | Zbl

[13] Kentaro Yano Integral Formulas in Riemannian Geometry, Pure and Applied Mathematics, 1, Marcel Dekker, 1970

[14] Chunping Zhong; Tongde Zhong Horizontal Laplace operator in real Finsler vector bundles, Acta Math. Sci., Volume 28 (2008) no. 1, pp. 128-140 | DOI | MR | Zbl

Cited by Sources:

Comments - Policy