Comptes Rendus
“Elementary” Number Theory
On a congruence involving q-Catalan numbers
Comptes Rendus. Mathématique, Volume 358 (2020) no. 2, pp. 211-215.

Based on a q-congruence of the author and Petrov, we set up a q-analogue of Sun–Tauraso’s congruence for sums of Catalan numbers, which extends a q-congruence due to Tauraso.

À partir d’une q-congruence de l’auteur et Petrov, nous établissons un q-analogue de la congruence de Sun–Tauraso pour des sommes de nombres de Catalan, qui étend la q-congruence due à Tauraso.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.35
Classification: 11B65, 11A07, 05A10

Ji-Cai Liu 1

1 Department of Mathematics, Wenzhou University, Wenzhou 325035, PR China
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMATH_2020__358_2_211_0,
     author = {Ji-Cai Liu},
     title = {On a congruence involving $q${-Catalan} numbers},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {211--215},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {2},
     year = {2020},
     doi = {10.5802/crmath.35},
     language = {en},
}
TY  - JOUR
AU  - Ji-Cai Liu
TI  - On a congruence involving $q$-Catalan numbers
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 211
EP  - 215
VL  - 358
IS  - 2
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.35
LA  - en
ID  - CRMATH_2020__358_2_211_0
ER  - 
%0 Journal Article
%A Ji-Cai Liu
%T On a congruence involving $q$-Catalan numbers
%J Comptes Rendus. Mathématique
%D 2020
%P 211-215
%V 358
%N 2
%I Académie des sciences, Paris
%R 10.5802/crmath.35
%G en
%F CRMATH_2020__358_2_211_0
Ji-Cai Liu. On a congruence involving $q$-Catalan numbers. Comptes Rendus. Mathématique, Volume 358 (2020) no. 2, pp. 211-215. doi : 10.5802/crmath.35. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.35/

[1] J. Fürlinger; J. Hofbauer q-Catalan numbers, J. Comb. Theory, Ser. A, Volume 40 (1985), pp. 248-264 | DOI | Zbl

[2] Victor J. W. Guo Proof of a q-congruence conjectured by Tauraso, Int. J. Number Theory, Volume 15 (2019) no. 1, pp. 37-41 | MR | Zbl

[3] Victor J. W. Guo; Ji-Cai Liu q-Analogues of two Ramanujan-type formulas for 1/π, J. Difference Equ. Appl., Volume 24 (2018) no. 8, pp. 1368-1373 | MR | Zbl

[4] Victor J. W. Guo; Michael J. Schlosser Some new q-congruences for truncated basic hypergeometric series, Symmetry, Volume 11 (2019) no. 2, 268, 12 pages | Zbl

[5] Victor J. W. Guo; Jiang Zeng Some congruences involving central q-binomial coefficients, Adv. Appl. Math., Volume 45 (2010) no. 3, pp. 303-316 | MR | Zbl

[6] Victor J. W. Guo; Wadim Zudilin A q-microscope for supercongruences, Adv. Math., Volume 346 (2019), pp. 329-358 | MR | Zbl

[7] Ji-Cai Liu On two conjectural supercongruences of Apagodu and Zeilberger, J. Difference Equ. Appl., Volume 22 (2016) no. 12, pp. 1791-1799 | MR | Zbl

[8] Ji-Cai Liu; Fedor Petrov Congruences on sums of q-binomial coefficients, Adv. Appl. Math., Volume 116 (2020), 102003, 11 pages | MR | Zbl

[9] Sandro Mattarei; Roberto Tauraso From generating series to polynomial congruences,, J. Number Theory, Volume 182 (2018), pp. 179-205 | DOI | MR | Zbl

[10] Zhi-Wei Sun; Roberto Tauraso New congruences for central binomial coefficients, Adv. Appl. Math., Volume 45 (2010) no. 1, pp. 125-148 | MR | Zbl

[11] Zhi-Wei Sun; Roberto Tauraso On some new congruences for binomial coefficients, Int. J. Number Theory, Volume 7 (2011) no. 3, pp. 645-662 | MR | Zbl

[12] Roberto Tauraso q-Analogs of some congruences involving Catalan numbers, Adv. Appl. Math., Volume 48 (2012) no. 5, pp. 603-614 | DOI | MR | Zbl

[13] Roberto Tauraso Some q-analogs of congruences for central binomial sums, Colloq. Math., Volume 133 (2013) no. 1, pp. 133-143 | DOI | MR | Zbl

Cited by Sources:

Comments - Policy