In this short note we construct two families of examples of large stratifying systems in module categories of algebras. The first examples consist on stratifying systems of infinite size in the module category of an algebra . In the second family of examples we show that the size of a finite stratifying system in the module category of a finite dimensional algebra can be arbitrarily large in comparison to the number of isomorphism classes of simple -modules. We note that both families of examples are built using well-established results in higher homological algebra.
Revised:
Accepted:
Published online:
Hipolito Treffinger 1
@article{CRMATH_2023__361_G1_15_0, author = {Hipolito Treffinger}, title = {The size of a stratifying system can be arbitrarily large}, journal = {Comptes Rendus. Math\'ematique}, pages = {15--19}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, year = {2023}, doi = {10.5802/crmath.385}, language = {en}, }
Hipolito Treffinger. The size of a stratifying system can be arbitrarily large. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 15-19. doi : 10.5802/crmath.385. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.385/
[1] Representation of associative algebras and coherent sheaves, Math. USSR, Izv., Volume 34 (1990) no. 1, pp. 23-42 | DOI | MR | Zbl
[2] -exceptional sequences, J. Algebra, Volume 585 (2021), pp. 36-68 | DOI | MR | Zbl
[3] Stratifying systems over hereditary algebras, J. Algebra Appl., Volume 14 (2015) no. 6, 1550093, 10 pages | MR | Zbl
[4] Stratifying systems over the hereditary path algebra with quiver , São Paulo J. Math. Sci., Volume 10 (2016) no. 1, pp. 73-90 | DOI | MR | Zbl
[5] Exceptional sequences of representations of quivers, Representations of algebras. Proceedings of the sixth international conference on representations of algebras, Carleton University, Ottawa, Ontario, Canada, August 19-22, 1992 (CMS Conference Proceedings), Volume 14, American Mathematical Society, 1993, pp. 117-124 | Zbl
[6] Stratifying systems, filtration multiplicities and symmetric groups, J. Algebra Appl., Volume 4 (2005) no. 5, pp. 551-555 | DOI | MR | Zbl
[7] On standardly stratified algebras, Commun. Algebra, Volume 31 (2003) no. 7, pp. 3429-3446 | DOI | MR | Zbl
[8] Exceptional fibre bundles on surfaces with moving anticanonical class, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 52 (1988) no. 4, pp. 740-757 | Zbl
[9] Exceptional vector bundles on projective spaces, Duke Math. J., Volume 54 (1987), pp. 115-130 | MR | Zbl
[10] -representation infinite algebras, Adv. Math., Volume 252 (2014), pp. 292-342 | DOI | MR | Zbl
[11] Classification of higher wide subcategories for higher Auslander algebras of type , J. Pure Appl. Algebra, Volume 225 (2021) no. 5, 106583, 23 pages | MR | Zbl
[12] Exceptional sequences and spherical modules for the Auslander algebra of , Pac. J. Math., Volume 302 (2019) no. 2, pp. 599-625 | DOI | MR | Zbl
[13] Cluster tilting for higher Auslander algebras, Adv. Math., Volume 226 (2011) no. 1, pp. 1-61 | DOI | MR | Zbl
[14] Higher Nakayama algebras. I: Construction, Adv. Math., Volume 351 (2019), pp. 1139-1200 | DOI | MR | Zbl
[15] Exceptional sequences for canonical algebras, Arch. Math., Volume 64 (1995) no. 4, pp. 304-312 | DOI | MR | Zbl
[16] Stratifying systems through -tilting theory, Doc. Math., Volume 25 (2020), pp. 701-720 | MR | Zbl
[17] Stratifying systems via relative simple modules, J. Algebra, Volume 280 (2004) no. 2, pp. 472-487 | MR | Zbl
[18] Stratifying systems via relative projective modules, Commun. Algebra, Volume 33 (2005) no. 5, pp. 1559-1573 | MR | Zbl
[19] Higher-dimensional cluster combinatorics and representation theory, J. Eur. Math. Soc., Volume 14 (2012) no. 6, pp. 1679-1737 | DOI | MR | Zbl
[20] Tilting modules and exceptional sequences for leaf quotients of type zig-zag algebras, Beitr. Algebra Geom., Volume 61 (2020) no. 2, pp. 189-207 | DOI | MR | Zbl
[21] The braid group action on the set of exceptional sequences of a hereditary Artin algebra, AAbelian group theory and related topics (Oberwolfach, 1993) (Contemporary Mathematics), Volume 171, American Mathematical Society (1994), pp. 339-352 | DOI | MR | Zbl
[22] Exceptional collections, mutations and helices, Helices and vector bundles (London Mathematical Society Lecture Note Series), Volume 148, Cambridge University Press, 1990, pp. 1-6 | MR | Zbl
[23] -cluster tilting subcategories for radical square zero algebras (2021) (https://arxiv.org/abs/2105.05830)
Cited by Sources:
Comments - Policy