Comptes Rendus
Homological Algebra/Algebraic Geometry
Stratifying derived module categories
[Stratification de catégories dérivées de modules]
Comptes Rendus. Mathématique, Volume 349 (2011) no. 21-22, pp. 1139-1144.

On utilise la notion de recollement pour obtenir une stratification de la catégorie dérivée de la catégorie des modules sur un anneau. Ces stratifications sont des analogues des suites de composition pour les groupes et les modules. Nous sommes ainsi amenés à chercher un analogue « dérivé » du théorème de Jordan Hölder : les stratifications sont-elles uniques à lʼordre des facteurs et aux équivalences près ? Cʼest effectivement le cas pour plusieurs classes dʼanneaux, y compris les anneaux semi-simples, les anneaux commutatifs noethériens, les algèbres de groupes de groupes finis et les algèbres de dimension finie qui sont héréditaires par morceaux.

The concept of recollement is used to obtain a stratification of the derived module category of a ring which may be regarded as an analogue of a composition series for groups or modules. This analogy raises the problem whether a ‘derived’ Jordan Hölder theorem holds true; that is, are such stratifications unique up to ordering and equivalence? This is indeed the case for several classes of rings, including semi-simple rings, commutative Noetherian rings, group algebras of finite groups, and finite dimensional algebras which are piecewise hereditary.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2011.06.018

Lidia Angeleri Hügel 1 ; Steffen Koenig 2 ; Qunhua Liu 2 ; Dong Yang 3

1 Dipartimento di Informatica – Settore Matematica, Università degli Studi di Verona, Strada Le Grazie 15 – Caʼ Vignal 2, 37134 Verona, Italy
2 Institute for Algebra and Number Theory, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
3 Hausdorff Research Institute for Mathematics, Poppelsdorfer Allee 82, 53115 Bonn, Germany
@article{CRMATH_2011__349_21-22_1139_0,
     author = {Lidia Angeleri H\"ugel and Steffen Koenig and Qunhua Liu and Dong Yang},
     title = {Stratifying derived module categories},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1139--1144},
     publisher = {Elsevier},
     volume = {349},
     number = {21-22},
     year = {2011},
     doi = {10.1016/j.crma.2011.06.018},
     language = {en},
}
TY  - JOUR
AU  - Lidia Angeleri Hügel
AU  - Steffen Koenig
AU  - Qunhua Liu
AU  - Dong Yang
TI  - Stratifying derived module categories
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 1139
EP  - 1144
VL  - 349
IS  - 21-22
PB  - Elsevier
DO  - 10.1016/j.crma.2011.06.018
LA  - en
ID  - CRMATH_2011__349_21-22_1139_0
ER  - 
%0 Journal Article
%A Lidia Angeleri Hügel
%A Steffen Koenig
%A Qunhua Liu
%A Dong Yang
%T Stratifying derived module categories
%J Comptes Rendus. Mathématique
%D 2011
%P 1139-1144
%V 349
%N 21-22
%I Elsevier
%R 10.1016/j.crma.2011.06.018
%G en
%F CRMATH_2011__349_21-22_1139_0
Lidia Angeleri Hügel; Steffen Koenig; Qunhua Liu; Dong Yang. Stratifying derived module categories. Comptes Rendus. Mathématique, Volume 349 (2011) no. 21-22, pp. 1139-1144. doi : 10.1016/j.crma.2011.06.018. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.06.018/

[1] L. Angeleri Hügel; S. Koenig; Q. Liu Recollements and tilting objects, J. Pure Appl. Alg., Volume 215 (2011), pp. 420-438 (also) | arXiv

[2] L. Angeleri Hügel, S. Koenig, Q. Liu, On the uniqueness of stratifications of derived module categories, preprint, 2009, . | arXiv

[3] L. Angeleri Hügel, S. Koenig, Q. Liu, Jordan Hölder theorems for derived module categories of piecewise hereditary algebras, preprint, 2011.

[4] L. Angeleri Hügel, S. Koenig, Q. Liu, D. Yang, On derived simple algebras, in preparation.

[5] A.A. Beilinson; J. Bernstein; P. Deligne Faisceaux pervers, Astérisque, Volume 100 (1982), pp. 5-171

[6] H.X. Chen, C.C. Xi, Good tilting modules and recollements of derived modules categories, preprint, 2010, . | arXiv

[7] E. Cline; B. Parshall; L. Scott Finite-dimensional algebras and highest weight categories, J. Reine Angew. Math., Volume 391 (1998), pp. 85-99

[8] E. Cline; B. Parshall; L. Scott Stratifying endomorphism algebras, Mem. A.M.S., Volume 124 (1996) no. 591 (119 pp)

[9] D. Happel A family of algebras with two simple modules and Fibonacci numbers, Arch. Math., Volume 57 (1991), pp. 133-139

[10] D. Happel Reduction techniques for homological conjectures, Tsukuba J. Math., Volume 17 (1993), pp. 115-130

[11] D. Happel; I. Reiten Hereditary abelian categories with tilting object over arbitrary base fields, J. Alg., Volume 256 (2002), pp. 414-432

[12] B. Keller Invariance and localization for cyclic homology of DG algebras, J. Pure Appl. Alg., Volume 123 (1998), pp. 223-273

[13] B. Keller On the cyclic homology of exact categories, J. Pure Appl. Alg., Volume 136 (1999), pp. 1-56

[14] S. Koenig Tilting complexes, perpendicular categories and recollements of derived module categories of rings, J. Pure Appl. Alg., Volume 73 (1991), pp. 211-232

[15] S. Koenig; H. Nagase Hochschild cohomology and stratifying ideals, J. Pure Appl. Alg., Volume 213 (2009), pp. 886-891

[16] Q. Liu, D. Yang, Blocks of group algebras are derived simple, preprint, 2011, . | arXiv

[17] P. Nicolás; M. Saorín Parameterizing recollement data for triangulated categories, J. Alg., Volume 322 (2009), pp. 1220-1250

[18] A. Wiedemann On stratifications of derived module categories, Canad. Math. Bull., Volume 34 (1991), pp. 275-280

Cité par Sources :

Commentaires - Politique