Let be an imaginary quadratic field where splits. We study signed Selmer groups for non-ordinary modular forms over the anticyclotomic -extension of , showing that one inclusion of an Iwasawa main conjecture involving the -adic -function of Bertolini–Darmon–Prasanna implies that their -invariants vanish. This gives an alternative method to reprove a recent result of Matar on the vanishing of the -invariants of plus and minus signed Selmer groups for elliptic curves.
Revised:
Accepted:
Published online:
Jeffrey Hatley 1; Antonio Lei 2
@article{CRMATH_2023__361_G1_65_0, author = {Jeffrey Hatley and Antonio Lei}, title = {The vanishing of anticyclotomic $\mu $-invariants for non-ordinary modular forms}, journal = {Comptes Rendus. Math\'ematique}, pages = {65--72}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, year = {2023}, doi = {10.5802/crmath.389}, language = {en}, }
TY - JOUR AU - Jeffrey Hatley AU - Antonio Lei TI - The vanishing of anticyclotomic $\mu $-invariants for non-ordinary modular forms JO - Comptes Rendus. Mathématique PY - 2023 SP - 65 EP - 72 VL - 361 PB - Académie des sciences, Paris DO - 10.5802/crmath.389 LA - en ID - CRMATH_2023__361_G1_65_0 ER -
Jeffrey Hatley; Antonio Lei. The vanishing of anticyclotomic $\mu $-invariants for non-ordinary modular forms. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 65-72. doi : 10.5802/crmath.389. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.389/
[1] Anticyclotomic Iwasawa theory of CM elliptic curves, Ann. Inst. Fourier, Volume 56 (2006) no. 4, pp. 1001-1048 | DOI | MR | Zbl
[2] Limites de représentations cristallines, Compos. Math., Volume 140 (2004) no. 6, pp. 1473-1498 | DOI | Zbl
[3] Generalized Heegner cycles and -adic Rankin -series, Duke Math. J., Volume 162 (2013) no. 6, pp. 1033-1148 | MR | Zbl
[4] Anticyclotomic -adic -function of central critical Rankin–Selberg -value, Int. Math. Res. Not. (2011) no. 21, pp. 4967-5018 | MR | Zbl
[5] Anticyclotomic -ordinary Iwasawa theory of elliptic modular forms, Forum Math., Volume 30 (2018) no. 4, pp. 887-913 | DOI | MR | Zbl
[6] Iwasawa theory of elliptic modular forms over imaginary quadratic fields at non-ordinary primes, Int. Math. Res. Not. (2021) no. 14, pp. 10654-10730 | DOI | MR | Zbl
[7] -adic heights of Heegner points and Beilinson-Flach elements, J. Lond. Math. Soc., Volume 96 (2017) no. 1, pp. 156-180 | DOI | MR | Zbl
[8] On the Iwasawa main conjectures for modular forms at non-ordinary primes (2018) (https://arxiv.org/abs/1804.10993)
[9] Variation of Iwasawa invariants in Hida families, Invent. Math., Volume 163 (2006) no. 3, pp. 523-580 | DOI | MR | Zbl
[10] Iwasawa theory for elliptic curves, Arithmetic theory of elliptic curves (Cetraro, 1997) (Lecture Notes in Mathematics), Volume 1716, Springer, 1999, pp. 51-144 | DOI | MR | Zbl
[11] On the Iwasawa invariants of elliptic curves, Invent. Math., Volume 142 (2000) no. 1, pp. 17-63 | DOI | MR | Zbl
[12] Arithmetic properties of signed Selmer groups at non-ordinary primes, Ann. Inst. Fourier, Volume 69 (2019) no. 3, pp. 1259-1294 | DOI | MR | Zbl
[13] Comparing anticyclotomic Selmer groups of positive coranks for congruent modular forms, Math. Res. Lett., Volume 26 (2019) no. 4, pp. 1115-1144 | DOI | MR | Zbl
[14] Comparing anticyclotomic Selmer groups of positive coranks for congruent modular forms - Part II, J. Number Theory, Volume 229 (2021), pp. 342-363 | DOI | MR | Zbl
[15] -submodules of finite index of anticyclotomic plus and minus Selmer groups of elliptic curves, Manuscr. Math., Volume 167 (2022) no. 3-4, pp. 589-612 | DOI | MR | Zbl
[16] The Heegner point Kolyvagin system, Compos. Math., Volume 140 (2004) no. 6, pp. 1439-1472 | DOI | MR | Zbl
[17] Iwasawa theory of Heegner points on abelian varieties of -type, Duke Math. J., Volume 124 (2004) no. 1, pp. 1-45 | Zbl
[18] Special values of anticyclotomic Rankin-Selberg -functions, Doc. Math., Volume 19 (2014), pp. 709-767 | MR | Zbl
[19] The Iwasawa invariants of the plus/minus Selmer groups, Asian J. Math., Volume 13 (2009) no. 2, pp. 181-190 | MR | Zbl
[20] The plus/minus Selmer groups for supersingular primes, J. Aust. Math. Soc., Volume 95 (2013) no. 2, pp. 189-200 | MR | Zbl
[21] Iwasawa theory for elliptic curves at supersingular primes, Invent. Math., Volume 152 (2003) no. 1, pp. 1-36 | DOI | MR | Zbl
[22] Anticyclotomic main conjecture for modular forms and integral Perrin-Riou twists, Development of Iwasawa theory – the centennial of K. Iwasawa’s birth. Proceedings of the international conference “Iwasawa 2017”, University of Tokyo, Tokyo, Japan, July 19–28, 2017 (Advanced Studies in Pure Mathematics), Volume 86, Mathematical Society of Japan (2020), pp. 537-594 | DOI | MR | Zbl
[23] Wach modules and Iwasawa theory for modular forms, Asian J. Math., Volume 14 (2010) no. 4, pp. 475-528 | MR | Zbl
[24] Kolyvagin systems and Iwasawa theory of generalized Heegner cycles, Kyoto J. Math., Volume 59 (2019) no. 3, pp. 717-746 | MR | Zbl
[25] Plus/minus Heegner points and Iwasawa theory of elliptic curves at supersingular primes, Boll. Unione Mat. Ital., Volume 12 (2019) no. 3, pp. 315-347 | DOI | MR | Zbl
[26] Plus/minus Selmer groups and anticyclotomic -extensions, Res. Number Theory, Volume 7 (2021) no. 3, 43 | DOI | MR | Zbl
[27] Rational points of abelian varieties with values in towers of number fields, Invent. Math., Volume 18 (1972), pp. 183-266 | DOI | MR | Zbl
[28] Kolyvagin systems, 799, American Mathematical Society, 2004 | DOI | Zbl
[29] Fonctions -adiques, théorie d’Iwasawa et points de Heegner, Bull. Soc. Math. Fr., Volume 115 (1987) no. 4, pp. 399-456 | DOI | Zbl
[30] On the -adic -function of a modular form at a supersingular prime, Duke Math. J., Volume 118 (2003) no. 3, pp. 523-558 | MR | Zbl
[31] On anticyclotomic -invariants of modular forms, Compos. Math., Volume 147 (2011) no. 5, pp. 439-485 | Zbl
[32] On the structure of signed Selmer groups, Math. Z., Volume 294 (2020) no. 3-4, pp. 1635-1658 | DOI | MR | Zbl
[33] Iwasawa theory for elliptic curves at supersingular primes: a pair of main conjectures, J. Number Theory, Volume 132 (2012) no. 7, pp. 1483-1506 | DOI | MR | Zbl
Cited by Sources:
Comments - Policy