The generalized Frobenius number is the largest integer represented in at most ways by a linear combination of nonnegative integers of given positive integers . When , it reduces to the classical Frobenius number. In this paper, we give the generalized Frobenius number when () as a generalization of the result of in [16].
Revised:
Accepted:
Published online:
Takao Komatsu 1
@article{CRMATH_2023__361_G1_73_0, author = {Takao Komatsu}, title = {The {Frobenius} number associated with the number of representations for sequences of repunits}, journal = {Comptes Rendus. Math\'ematique}, pages = {73--89}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, year = {2023}, doi = {10.5802/crmath.394}, language = {en}, }
Takao Komatsu. The Frobenius number associated with the number of representations for sequences of repunits. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 73-89. doi : 10.5802/crmath.394. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.394/
[1] Sur les branches superlinéaires des courbes algébriques, C. R. Acad. Sci. Paris, Volume 222 (1946), pp. 1198-1200 | Zbl
[2] The Frobenius problem for numerical semigroup generated by sequences that satisfy a linear recurrence relation (2021) (https://arxiv.org/abs/2111.04899)
[3] The polynomial part of a restricted partition function related to the Frobenius problem, Electron. J. Comb., Volume 8 (2001) no. 1, 7, 5 pages | MR | Zbl
[4] An extreme family of generalized Frobenius numbers, Integers, Volume 11 (2011) no. 5, A24, pp. 639-645 | MR | Zbl
[5] Recreations in the theory of numbers – the queen of mathematics entertains, Dover Publications, 1966 | Zbl
[6] The number of solutions to and its relation to quadratic residues, J. Integer Seq., Volume 23 (2020) no. 6, 20.6.5, 19 pages | MR | Zbl
[7] On a problem of Frobenius, J. Reine Angew. Math., Volume 211 (1962), pp. 215-220 | Zbl
[8] On a problem of double partitions, Philos. Mag., Volume XX (1860), pp. 337-341 | DOI
[9] On the number of solutions of the Diophantine equation of Frobenius-General case, Math. Commun., Volume 8 (2003) no. 2, pp. 195-206 | MR | Zbl
[10] The Frobenius number for sequences of triangular numbers associated with number of solutions, Ann. Comb., Volume 26 (2022) no. 3, pp. 757-779 | DOI | MR | Zbl
[11] Sylvester power and weighted sums on the Frobenius set in arithmetic progression, Discrete Appl. Math., Volume 315 (2022), pp. 110-126 | DOI | MR | Zbl
[12] Weighted Sylvester sums on the Frobenius set, Ir. Math. Soc. Bull., Volume 87 (2021), pp. 21-29 | MR | Zbl
[13] Weighted Sylvester sums on the Frobenius set in more variables, Kyushu J. Math., Volume 76 (2022) no. 1, pp. 163-175 | DOI | MR | Zbl
[14] The Frobenius number for sequences of triangular and tetrahedral numbers, J. Number Theory, Volume 186 (2018), pp. 473-492 | DOI | MR | Zbl
[15] The Frobenius problem for Thabit numerical semigroups, J. Number Theory, Volume 155 (2015), pp. 85-99 | DOI | MR | Zbl
[16] The Frobenius problem for repunit numerical semigroups, Ramanujan J., Volume 40 (2016) no. 2, pp. 323-334 | DOI | MR | Zbl
[17] The Frobenius problem for Mersenne numerical semigroups, Math. Z., Volume 286 (2017) no. 1-2, pp. 741-749 | DOI | MR | Zbl
[18] On the linear diophantine problem of Frobenius, J. Reine Angew. Math., Volume 293/294 (1977), pp. 1-17 | MR | Zbl
[19] On the partition of numbers, Quart. J., Volume 1 (1857), pp. 141-152
[20] The number of solutions to , Fibonacci Q., Volume 38 (2000) no. 4, pp. 290-293 | MR | Zbl
Cited by Sources:
Comments - Policy