Comptes Rendus
Théorie du contrôle
On expansions for nonlinear systems Error estimates and convergence issues
Comptes Rendus. Mathématique, Volume 361 (2023), pp. 97-189.

Explicit formulas expressing the solution to non-autonomous differential equations are of great importance in many application domains such as control theory or numerical operator splitting. In particular, intrinsic formulas allowing to decouple time-dependent features from geometry-dependent features of the solution have been extensively studied.

First, we give a didactic review of classical expansions for formal linear differential equations, including the celebrated Magnus expansion (associated with coordinates of the first kind) and Sussmann’s infinite product expansion (associated with coordinates of the second kind). Inspired by quantum mechanics, we introduce a new mixed expansion, designed to isolate the role of a time-invariant drift from the role of a time-varying perturbation.

Second, in the context of nonlinear ordinary differential equations driven by regular vector fields, we give rigorous proofs of error estimates between the exact solution and finite approximations of the formal expansions. In particular, we derive new estimates focusing on the role of time-varying perturbations. For scalar-input systems, we derive new estimates involving only a weak Sobolev norm of the input.

Third, we investigate the local convergence of these expansions. We recall known positive results for nilpotent dynamics and for linear dynamics. Nevertheless, we also exhibit arbitrarily small analytic vector fields for which the convergence of the Magnus expansion fails, even in very weak senses. We state an open problem concerning the convergence of Sussmann’s infinite product expansion.

Eventually, we derive approximate direct intrinsic representations for the state and discuss their link with the choice of an appropriate change of coordinates.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.395
Karine Beauchard 1 ; Jérémy Le Borgne 1 ; Frédéric Marbach 1

1 Univ Rennes, CNRS, IRMAR - UMR 6625, F-35000 Rennes, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2023__361_G1_97_0,
     author = {Karine Beauchard and J\'er\'emy Le Borgne and Fr\'ed\'eric Marbach},
     title = {On expansions for nonlinear systems  {Error} estimates and convergence issues},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {97--189},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     year = {2023},
     doi = {10.5802/crmath.395},
     language = {en},
}
TY  - JOUR
AU  - Karine Beauchard
AU  - Jérémy Le Borgne
AU  - Frédéric Marbach
TI  - On expansions for nonlinear systems  Error estimates and convergence issues
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 97
EP  - 189
VL  - 361
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.395
LA  - en
ID  - CRMATH_2023__361_G1_97_0
ER  - 
%0 Journal Article
%A Karine Beauchard
%A Jérémy Le Borgne
%A Frédéric Marbach
%T On expansions for nonlinear systems  Error estimates and convergence issues
%J Comptes Rendus. Mathématique
%D 2023
%P 97-189
%V 361
%I Académie des sciences, Paris
%R 10.5802/crmath.395
%G en
%F CRMATH_2023__361_G1_97_0
Karine Beauchard; Jérémy Le Borgne; Frédéric Marbach. On expansions for nonlinear systems  Error estimates and convergence issues. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 97-189. doi : 10.5802/crmath.395. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.395/

[1] Eiichi Abe Hopf algebras, Cambridge Tracts in Mathematics, 74, Cambridge University Press, 1980 | Zbl

[2] Rüdiger Achilles; Andrea Bonfiglioli The early proofs of the theorem of Campbell, Baker, Hausdorff, and Dynkin, Arch. Hist. Exact Sci., Volume 66 (2012) no. 3, pp. 295-358 | DOI | MR | Zbl

[3] Andrei Agračev; Revaz Gamkrelidze Exponential representation of flows and a chronological enumeration, Mat. Sb., N. Ser., Volume 107(149) (1978) no. 4, p. 467-532, 639 | MR | Zbl

[4] Andrei Agračev; Revaz Gamkrelidze Chronological algebras and nonstationary vector fields, Problems in geometry, Vol. 11 (Russian), Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Informatsii, Moscow, 1980, p. 135-176, 243 | MR

[5] Andrei Agračev; Yuri Sachkov Control theory from the geometric viewpoint, Encyclopaedia of Mathematical Sciences, 87, Springer, 2004 | DOI | Zbl

[6] Mahdi Jasim Hasan Al-Kaabi; Kurusch Ebrahimi-Fard; Dominique Manchon Post-Lie-Magnus expansion and BCH-recursion, SIGMA, Symmetry Integrability Geom. Methods Appl., Volume 18 (2022), 23 | DOI | MR | Zbl

[7] Jaime Arango; Adriana Gómez Flows and diffeomorphisms, Rev. Colomb. Mat., Volume 32 (1998) no. 1, pp. 13-27 | MR | Zbl

[8] Jaime Arango; Adriana Gómez Diffeomorphisms as time one maps, Aequationes Math., Volume 64 (2002) no. 3, pp. 304-314 | DOI | MR | Zbl

[9] George Arfken; Hans Weber; Frank Harris Mathematical methods for physicists. A comprehensive guide, Elsevier; Academic Press, 2013 | Zbl

[10] Ana Arnal; Fernando Casas; Cristina Chiralt A note on the Baker–Campbell–Hausdorff series in terms of right-nested commutators, Mediterr. J. Math., Volume 18 (2021) no. 2, 53 | MR | Zbl

[11] Henry Baker Alternants and Continuous Groups, Proc. Lond. Math. Soc., Volume 3 (1905), pp. 24-47 | DOI | MR | Zbl

[12] Fabrice Baudoin An introduction to the geometry of stochastic flows, Imperial College Press, 2004 | DOI | MR | Zbl

[13] Karine Beauchard; Jérémy Le Borgne; Frédéric Marbach Growth of structure constants of free Lie algebras relative to Hall bases, J. Algebra, Volume 612 (2022), pp. 281-378 | DOI | MR | Zbl

[14] Karine Beauchard; Frédéric Marbach Quadratic obstructions to small-time local controllability for scalar-input systems, J. Differ. Equations, Volume 264 (2018) no. 5, pp. 3704-3774 | DOI | MR | Zbl

[15] Gérard Ben Arous Flots et séries de Taylor stochastiques, Probab. Theory Relat. Fields, Volume 81 (1989) no. 1, pp. 29-77 | DOI | MR | Zbl

[16] Stefano Biagi; Andrea Bonfiglioli; Marco Matone On the Baker–Campbell–Hausdorff Theorem: non-convergence and prolongation issues, Linear Multilinear Algebra (2018), pp. 1-19 | DOI | Zbl

[17] Rosa Maria Bianchini; Gianna Stefani Sufficient conditions of local controllability, 1986 25th IEEE Conference on Decision and Control, IEEE (1986), pp. 967-970 | DOI | Zbl

[18] Sergio Blanes; Fernando Casas On the convergence and optimization of the Baker-Campbell-Hausdorff formula, Linear Algebra Appl., Volume 378 (2004), pp. 135-158 | DOI | MR | Zbl

[19] Sergio Blanes; Fernando Casas A concise introduction to geometric numerical integration, Monographs and Research Notes in Mathematics, CRC Press, 2016 | MR | Zbl

[20] Sergio Blanes; Fernando Casas; Ander Murua Splitting and composition methods in the numerical integration of differential equations, Bol. Soc. Esp. Mat. Apl., Se MA, Volume 45 (2008), pp. 89-145 | Zbl

[21] Sergio Blanes; Fernando Casas; José Oteo; Javier Ros A pedagogical approach to the Magnus expansion, Eur. J. Phys., Volume 31 (2010) no. 4, pp. 907-918 | DOI | Zbl

[22] Sergio Blanes; Per Christian Moan Splitting methods for non-autonomous Hamiltonian equations, J. Comput. Phys., Volume 170 (2001) no. 1, pp. 205-230 | DOI | MR | Zbl

[23] Andrea Bonfiglioli; Roberta Fulci Topics in noncommutative algebra. The theorem of Campbell, Baker, Hausdorff and Dynkin, Lecture Notes in Mathematics, 2034, Springer, 2012 | DOI | MR | Zbl

[24] Nicolas Bourbaki Elements of mathematics. Lie groups and Lie algebras. Part I: Chapters 1-3. English translation (Actualités Scientifiques et Industrielles), 1975 | Zbl

[25] Nicolas Bourbaki Éléments d’histoire des mathématiques, Masson, 1984, 376 pages (Reprints of the historical notes from the ıt Éléments) | MR | Zbl

[26] Nicolas Bourbaki Algebra I. Chapters 1–3, Elements of Mathematics (Berlin), Springer, 1998 (Translated from the French, Reprint of the 1989 English translation) | MR | Zbl

[27] Boris Buffoni; John Toland Analytic theory of global bifurcation. An introduction, Princeton Series in Applied Mathematics, Princeton University Press, 2003 | DOI | Zbl

[28] Kevin Burrage; Pamela Burrage High strong order methods for non-commutative stochastic ordinary differential equation systems and the Magnus formula, Physica D, Volume 133 (1999) no. 1-4, pp. 34-48 Predictability: quantifying uncertainty in models of complex phenomena (Los Alamos, NM, 1998) | DOI | MR | Zbl

[29] John Edward Campbell On a Law of Combination of Operators (Second Paper), Proc. Lond. Math. Soc., Volume 29 (1898), pp. 14-32 | DOI | MR

[30] Fernando Casas; Arieh Iserles Explicit Magnus expansions for nonlinear equations, J. Phys. A, Math. Gen., Volume 39 (2006) no. 19, pp. 5445-5461 | DOI | MR | Zbl

[31] Fernando Casas; Ander Murua An efficient algorithm for computing the Baker–Campbell–Hausdorff series and some of its applications, J. Math. Phys., Volume 50 (2009) no. 3, 033513 | DOI | MR | Zbl

[32] Fabienne Castell Asymptotic expansion of stochastic flows, Probab. Theory Relat. Fields, Volume 96 (1993) no. 2, pp. 225-239 | DOI | MR | Zbl

[33] Kuo-Tsai Chen Iterated integrals and exponential homomorphisms, Proc. Lond. Math. Soc., Volume 4 (1954), pp. 502-512 | DOI | MR | Zbl

[34] Kuo-Tsai Chen Integration of paths, geometric invariants and a generalized Baker–Hausdorff formula, Ann. Math., Volume 65 (1957), pp. 163-178 | DOI | MR | Zbl

[35] Paul Moritz Cohn Sur le critère de Friedrichs pour les commutateurs dans une algèbre associative libre, C. R. Acad. Sci. Paris, Volume 239 (1954), pp. 743-745 | MR | Zbl

[36] Jean-Michel Coron Control and nonlinearity, Mathematical Surveys and Monographs, 136, American Mathematical Society, 2007 | Zbl

[37] Charles Curry; Kurusch Ebrahimi-Fard; Hans Munthe-Kaas What is a post-Lie algebra and why is it useful in geometric integration, Numerical mathematics and advanced applications—ENUMATH 2017 (Lecture Notes in Computational Science and Engineering), Volume 126, Springer (2017), pp. 429-437 | DOI | Zbl

[38] Bruce Driver On truncated logarithms of flows on a Riemannian manifold (2018) (https://arxiv.org/abs/1810.02414)

[39] Evgenii Dynkin Calculation of the coefficients in the Campbell-Hausdorff formula, Dokl. Akad. Nauk SSSR, Volume 57 (1947), pp. 323-326 | MR | Zbl

[40] Evgenii Dynkin On the representation by means of commutators of the series log (e x e y ) for noncommutative x and y, Mat. Sb., N. Ser., Volume 25(67) (1949), pp. 155-162 | MR | Zbl

[41] Kurusch Ebrahimi-Fard; Dominique Manchon A Magnus- and Fer-type formula in dendriform algebras., Found. Comput. Math., Volume 9 (2009) no. 3, pp. 295-316 | DOI | MR | Zbl

[42] Kurusch Ebrahimi-Fard; Dominique Manchon The Magnus expansion, trees and Knuth’s rotation correspondence, Found. Comput. Math., Volume 14 (2014) no. 1, pp. 1-25 | DOI | MR | Zbl

[43] Kurusch Ebrahimi-Fard; Frédéric Patras The pre-Lie structure of the time-ordered exponential, Lett. Math. Phys., Volume 104 (2014) no. 10, pp. 1281-1302 | DOI | MR | Zbl

[44] David Finkelstein On relations between commutators, Commun. Pure Appl. Math., Volume 8 (1955), pp. 245-250 | DOI | MR | Zbl

[45] Michel Fliess Fonctionnelles causales non linéaires et indéterminées non commutatives, Bull. Soc. Math. Fr., Volume 109 (1981) no. 1, pp. 3-40 | DOI | MR | Zbl

[46] Michel Fliess Réalisation locale des systèmes non linéaires, algèbres de Lie filtrées transitives et séries génératrices non commutatives, Invent. Math., Volume 71 (1983) no. 3, pp. 521-537 | DOI | Zbl

[47] Gunnar Fløystad; Hans Munthe-Kaas Pre- and post-Lie algebras: the algebro-geometric view, Computation and combinatorics in dynamics, stochastics and control. The Abel symposium, Rosendal, Norway, August 16–19, 2016. Selected papers, Springer, 2018, pp. 321-367 | DOI | Zbl

[48] Kurt Friedrichs Mathematical aspects of the quantum theory of fields. V. Fields modified by linear homogeneous forces, Commun. Pure Appl. Math., Volume 6 (1953), pp. 1-72 | DOI | MR | Zbl

[49] Revaz Gamkrelidze Exponential representation of solutions of ordinary differential equations, Equadiff IV (Proc. Czechoslovak Conf. Differential Equations and their Applications, Prague, 1977) (Lecture Notes in Mathematics), Volume 703, Springer, 1979, pp. 118-129 | MR | Zbl

[50] Israel Gel’fand; Mark Naĭmark On the imbedding of normed rings into the ring of operators in Hilbert space, Mat. Sb., N. Ser., Volume 12 (54) (1943), pp. 197-213 | Zbl

[51] Laetitia Giraldi; Pierre Lissy; Clément Moreau; Jean-Baptiste Pomet Necessary conditions for local controllability of a particular class of systems with two scalar controls (2019) (https://arxiv.org/abs/1907.04706)

[52] Janusz Grabowski Free subgroups of diffeomorphism groups, Fundam. Math., Volume 131 (1988) no. 2, pp. 103-121 | DOI | MR | Zbl

[53] W. Steven Gray; Luis A. Duffaut Espinosa A Faà di Bruno Hopf algebra for a group of Fliess operators with applications to feedback, Syst. Control Lett., Volume 60 (2011) no. 7, pp. 441-449 | DOI | Zbl

[54] W. Steven Gray; Luis A. Duffaut Espinosa; Kurusch Ebrahimi-Fard Faà di Bruno Hopf algebra of the output feedback group for multivariable Fliess operators, Syst. Control Lett., Volume 74 (2014), pp. 64-73 | DOI | Zbl

[55] W. Steven Gray; Luis A. Duffaut Espinosa; Kurusch Ebrahimi-Fard Additive Networks of Chen–Fliess Series: Local Convergence and Relative Degree (2021) (https://arxiv.org/abs/2104.08950)

[56] W. Steven Gray; Kurusch Ebrahimi-Fard Generating series for networks of Chen-Fliess series, Syst. Control Lett., Volume 147 (2021), 104827 | DOI | MR | Zbl

[57] W. Steven Gray; Yuan Wang Fliess operators on L p spaces: convergence and continuity, Syst. Control Lett., Volume 46 (2002) no. 2, pp. 67-74 | DOI | MR | Zbl

[58] Ernst Hairer; Christian Lubich; Gerhard Wanner Geometric numerical integration, Springer Series in Computational Mathematics, 31, Springer, 2010 | MR | Zbl

[59] Marshall jun. Hall A basis for free Lie rings and higher commutators in free groups, Proc. Am. Math. Soc., Volume 1 (1950), pp. 575-581 | DOI | MR | Zbl

[60] Philip Hall A contribution to the theory of groups of prime-power order, Proc. Lond. Math. Soc., Volume 36 (1933), pp. 29-95 | MR | Zbl

[61] Felix Hausdorff Die symbolische Exponentialformel in der Gruppentheorie, Ber. Verh. Kgl. Schs. Ges. Wiss. Leipzig., Math.-phys. Kl., Volume 58 (1906), pp. 19-48 | Zbl

[62] Henry Hermes Local controllability and sufficient conditions in singular problems. II, SIAM J. Control Optim., Volume 14 (1976) no. 6, pp. 1049-1062 | DOI | MR | Zbl

[63] Henry Hermes; Matthias Kawski Local controllability of a single input, affine system, Nonlinear analysis and applications (Arlington, Tex., 1986) (Lecture Notes in Pure and Applied Mathematics), Volume 109, Marcel Dekker, 1987, pp. 235-248 | MR

[64] Arieh Iserles; Hans Munthe-Kaas; Syvert Nørsett; Antonella Zanna Lie-group methods (Acta Numerica), Volume 9, Cambridge University Press, 2000, pp. 215-365 | DOI | MR | Zbl

[65] Nathan Jacobson Lie algebras, Dover Publications, 1979 | MR

[66] Frédéric Jean Control of nonholonomic systems: from sub-Riemannian geometry to motion planning, SpringerBriefs in Mathematics, Springer; Bilbao: BCAM – Basque Center for Applied Mathematics, 2014 | MR | Zbl

[67] Velimir Jurdjevic; Héctor Sussmann Control systems on Lie groups, J. Differ. Equations, Volume 12 (1972), pp. 313-329 | DOI | MR | Zbl

[68] Mikhail Karasev; Mikhail Mosolova Infinite products and T-products of exponents, Teor. Mat. Fiz., Volume 28 (1976) no. 2, pp. 189-200 | MR

[69] Matthias Kawski Controllability via chronological calculus, Proceedings of the IEEE Conference on Decision and Control, Volume 3, IEEE (1999), pp. 2920-2925 | DOI

[70] Matthias Kawski Calculating the logarithm of the Chen Fliess series, Proc. MTNS, Perpignan (2000)

[71] Matthias Kawski The combinatorics of nonlinear controllability and noncommuting flows, Mathematical control theory, Part 1, 2 (Trieste, 2001) (ICTP Lecture Notes), Volume VIII, Abdus Salam International Centre for Theoretical Physics, 2002, pp. 223-311 | MR | Zbl

[72] Matthias Kawski Chronological calculus in systems and control theory, Mathematics of Complexity and Dynamical Systems, Springer, 2012, pp. 88-101 | DOI | MR

[73] Matthias Kawski High-order small-time local controllability, Nonlinear controllability and optimal control (H. J. Sussmann, ed.), Routledge, 2017, pp. 431-467 | DOI

[74] Matthias Kawski; Héctor Sussmann Noncommutative power series and formal Lie-algebraic techniques in nonlinear control theory, Operators, systems, and linear algebra (Kaiserslautern) (European Consortium for Mathematics in Industry), Teubner, 1997, pp. 111-128 | DOI | MR | Zbl

[75] Arthur Krener On the equivalence of control systems and the linearization of nonlinear systems, SIAM J. Control, Volume 11 (1973), pp. 670-676 | DOI | MR | Zbl

[76] Arthur Krener Local approximation of control systems, J. Differ. Equations, Volume 19 (1975), pp. 125-133 | DOI | MR | Zbl

[77] John Lee Introduction to smooth manifolds, Graduate Texts in Mathematics, 218, Springer, 2013 | Zbl

[78] Roger Lyndon A theorem of Friedrichs, Mich. Math. J., Volume 3 (1956), pp. 27-29 | MR | Zbl

[79] Marco Maggia; Sameh A Eisa; Haithem E. Taha On higher-order averaging of time-periodic systems: reconciliation of two averaging techniques, Nonlinear Dyn., Volume 99 (2020) no. 1, pp. 813-836 | DOI | Zbl

[80] Wilhelm Magnus On the exponential solution of differential equations for a linear operator, Commun. Pure Appl. Math., Volume 7 (1954), pp. 649-673 | DOI | MR | Zbl

[81] Robert McLachlan Composition methods in the presence of small parameters, BIT, Volume 35 (1995) no. 2, pp. 258-268 | DOI | MR | Zbl

[82] Robert McLachlan; Klas Modin; Hans Munthe-Kaas; Olivier Verdier Butcher series: a story of rooted trees and numerical methods for evolution equations (2015) (https://arxiv.org/abs/1512.00906v1)

[83] Per Christian Moan; Jitse Niesen Convergence of the Magnus series, Found. Comput. Math., Volume 8 (2008) no. 3, pp. 291-301 | DOI | MR | Zbl

[84] Clément Mouhot; Cédric Villani On Landau damping, Acta Math., Volume 207 (2011) no. 1, pp. 29-201 | DOI | MR | Zbl

[85] Hans Munthe-Kaas; Brynjulf Owren Computations in a free Lie algebra, Philos. Trans. R. Soc. Lond., Ser. A, Volume 357 (1999) no. 1754, pp. 957-981 | DOI | MR | Zbl

[86] Ander Murua The Hopf algebra of rooted trees, free Lie algebras, and Lie series, Found. Comput. Math., Volume 6 (2006) no. 4, pp. 387-426 | DOI | MR | Zbl

[87] Alexander Nagel; Elias Stein; Stephen Wainger Balls and metrics defined by vector fields. I. Basic properties, Acta Math., Volume 155 (1985) no. 1-2, pp. 103-147 | DOI | MR | Zbl

[88] Jacob Palis Vector fields generate few diffeomorphisms, Bull. Am. Math. Soc., Volume 80 (1974), pp. 503-505 | DOI | MR | Zbl

[89] Rimhak Ree Lie elements and an algebra associated with shuffles, Ann. Math., Volume 68 (1958), pp. 210-220 | DOI | MR | Zbl

[90] Christophe Reutenauer Free Lie algebras, London Mathematical Society Monographs. New Series, 7, Clarendon Press, 1993 | MR | Zbl

[91] Leonardo Saenz; Rodolfo Suarez Lie algebras associated with the exponential solutions of nonautonomous linear differential equations, J. Math. Phys., Volume 42 (2001) no. 9, pp. 4582-4605 | DOI | MR | Zbl

[92] Leonardo Saenz; Rodolfo Suarez A combinatorial approach to the generalized Baker-Campbell-Hausdorff-Dynkin formula, Syst. Control Lett., Volume 45 (2002) no. 5, pp. 357-370 | DOI | MR | Zbl

[93] Andrei Sarychev Lie- and chronologico-algebraic tools for studying stability of time-varying systems, Syst. Control Lett., Volume 43 (2001) no. 1, pp. 59-76 | DOI | MR | Zbl

[94] Anatolii Shirshov On the bases of a free Lie algebra, Algebra Logika, Volume 1 (1962) no. 1, pp. 14-19 | MR | Zbl

[95] Wilhelm Specht Die linearen Beziehungen zwischen höheren Kommutatoren, Math. Z., Volume 51 (1948), pp. 367-376 | DOI | MR | Zbl

[96] Gianna Stefani On the local controllability of a scalar-input control system, Theory and applications of nonlinear control systems (Stockholm, 1985), North-Holland, 1986, pp. 167-179 | MR | Zbl

[97] Robert Strichartz The Campbell–Baker–Hausdorff–Dynkin formula and solutions of differential equations, J. Funct. Anal., Volume 72 (1987) no. 2, pp. 320-345 | DOI | MR | Zbl

[98] Héctor Sussmann An extension of a theorem of Nagano on transitive Lie algebras, Proc. Am. Math. Soc., Volume 45 (1974), pp. 349-356 | DOI | MR | Zbl

[99] Héctor Sussmann Lie brackets and local controllability: a sufficient condition for scalar-input systems, SIAM J. Control Optim., Volume 21 (1983) no. 5, pp. 686-713 | DOI | MR | Zbl

[100] Héctor Sussmann A product expansion for the Chen series, Theory and applications of nonlinear control systems (Stockholm, 1985), North-Holland, 1986, pp. 323-335 | DOI | MR | Zbl

[101] Hale Trotter On the product of semi-groups of operators, Proc. Am. Math. Soc., Volume 10 (1959), pp. 545-551 | DOI | MR | Zbl

[102] Gérard Viennot Algèbres de Lie libres et monoïdes libres. Bases des algèbres de Lie libres et factorisations des monoïdes libres, Lecture Notes in Mathematics, 691, Springer, 1978 | DOI | MR | Zbl

[103] James Wei Note on the global validity of the Baker-Hausdorff and Magnus theorems, J. Math. Phys., Volume 4 (1963), pp. 1337-1341 | DOI | MR | Zbl

[104] Franz Wever Operatoren in Lieschen Ringen, J. Reine Angew. Math., Volume 187 (1949), pp. 44-55 | DOI | MR | Zbl

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Geometric conditions for the null-controllability of hypoelliptic quadratic parabolic equations with moving control supports

Karine Beauchard; Michela Egidi; Karel Pravda-Starov

C. R. Math (2020)


Semi-global weak stabilization of bilinear Schrödinger equations

Karine Beauchard; Vahagn Nersesyan

C. R. Math (2010)


Mixing by porous media

Emmanuel Villermaux

C. R. Méca (2012)