This paper concerns the energy conservation for the weak solutions to the Navier–Stokes–Maxwell system. Although the Maxwell equation with hyperbolic nature, we still establish a type condition guarantee validity of the energy equality for the weak solutions. We mention that there no regularity assumption on the electric field .
Accepted:
Published online:
Dandan Ma 1; Fan Wu 1
@article{CRMATH_2023__361_G1_91_0, author = {Dandan Ma and Fan Wu}, title = {Shinbrot{\textquoteright}s energy conservation criterion for the {3D} {Navier{\textendash}Stokes{\textendash}Maxwell} system}, journal = {Comptes Rendus. Math\'ematique}, pages = {91--96}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, year = {2023}, doi = {10.5802/crmath.379}, language = {en}, }
Dandan Ma; Fan Wu. Shinbrot’s energy conservation criterion for the 3D Navier–Stokes–Maxwell system. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 91-96. doi : 10.5802/crmath.379. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.379/
[1] Solutions of Navier-Stokes-Maxwell systems in large energy spaces, Trans. Am. Math. Soc., Volume 373 (2020) no. 6, pp. 3853-3884 | DOI | MR | Zbl
[2] Green’s function and large time behavior of the Navier-Stokes-Maxwell system, Anal. Appl., Singap., Volume 10 (2012) no. 2, pp. 133-197 | DOI | MR | Zbl
[3] Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen, Math. Nachr., Volume 4 (1951) no. 1-6, pp. 213-231 | Zbl
[4] Linear and quasi-linear equations of parabolic type, Translations of Mathematical Monographs, 23, American Mathematical Society, 1968 | Zbl
[5] Sur le mouvement d’un liquide visqueux emplissant l’espace, Acta Math., Volume 63 (1934) no. 1, pp. 193-248 | DOI | MR | Zbl
[6] Sur la régularité et l’unicité des solutions turbulentes des équations de Navier-Stokes, Rend. Semin. Mat., Torino, Volume 30 (1960), pp. 16-23 | Zbl
[7] Mathematical Topics in Fluid Mechanics, Vol. 1: Incompressible Models., Oxford Lecture Series in Mathematics and its Applications, 3, Oxford University Press, 1996 | Zbl
[8] Global well posedness for the Maxwell-Navier-Stokes system in 2D, J. Math. Pures Appl., Volume 93 (2010) no. 6, pp. 559-571 | DOI | MR | Zbl
[9] The energy equation for the Navier-Stokes system, SIAM J. Math. Anal., Volume 5 (1975) no. 6, pp. 948-954 | DOI | MR | Zbl
[10] Global small solutions for the Navier-Stokes-Maxwell system, SIAM J. Math. Anal., Volume 43 (2011) no. 5, pp. 2275-2295 | DOI | MR | Zbl
[11] On the energy equality for the 3D incompressible viscoelastic flows (2021) (https://arxiv.org/abs/2111.13547v1)
[12] The energy conservation and regularity for the Navier-Stokes equations (2021) (https://arxiv.org/abs/2107.04157)
[13] A new proof to the energy conservation for the Navier-Stokes equations (2016) (https://arxiv.org/abs/1604.05697)
Cited by Sources:
Comments - Policy