The problem of nonparametric classification by -nearest neighbors rule in a general metric space will be considered. Consistency and strong consistency of the classifier will be established under mild conditions.
Le problème de la classification non paramétrique par la règle des - plus proches voisins dans un espace métrique général sera considéré. La consistance et la forte consistance du classifieur seront établies sous des conditions légères.
Accepted:
Published online:
Ahmad Younso 1, 2
CC-BY 4.0
@article{CRMATH_2023__361_G1_237_0,
author = {Ahmad Younso},
title = {Consistency of the $k$-nearest neighbors rule for functional data},
journal = {Comptes Rendus. Math\'ematique},
pages = {237--242},
year = {2023},
publisher = {Acad\'emie des sciences, Paris},
volume = {361},
doi = {10.5802/crmath.402},
language = {en},
}
Ahmad Younso. Consistency of the $k$-nearest neighbors rule for functional data. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 237-242. doi: 10.5802/crmath.402
[1] On the kernel rule for function classification, Ann. Inst. Stat. Math., Volume 58 | MR
[2] Functional classification in Hilbert spaces, IEEE Trans. Inf. Theory, Volume 51 (2005) no. 6, pp. 2163-2172 | MR | Zbl | DOI
[3] Nearest neighbor classification in infinite dimension, ESAIM, Probab. Stat., Volume 10 (2006), pp. 340-355 | DOI | MR | Zbl
[4] Rates of Convergence for Nearest Neighbor Classification (2014) | arXiv
[5] On the Strong Universal Consistency of Nearest Neighbor Regression Function Estimates, Ann. Stat., Volume 22 (1994) no. 3, pp. 1371-1385 | MR | Zbl
[6] A probabilistic Theory of Pattern Recognition, Applications of Mathematics, 31, Springer, 1996 | DOI
[7] Consistent Nonparametric Regression for Functional Data Under the Stone–Besicovitch Conditions, IEEE Trans. Inf. Theory, Volume 58 (2012) no. 11, pp. 6697-6708 | DOI | MR | Zbl
[8] On the method of bounded differences, Surveys of combinatorics (London Mathematical Society Lecture Note Series), Volume 141, Cambridge University Press, 1989, pp. 148-188 | MR | Zbl
[9] Consistent nonparametric regression, Ann. Stat., Volume 5 (1977) no. 4, pp. 595-620 | MR | Zbl
Cited by Sources:
Comments - Policy
