Comptes Rendus
Equations aux dérivées partielles
Monotonicity and complete monotonicity of some functions involving the modified Bessel functions of the second kind
Comptes Rendus. Mathématique, Volume 361 (2023), pp. 217-235.

In this paper, we introduce some monotonicity rules for the ratio of integrals. Furthermore, we demonstrate that the function -Tν,α,β(s) is completely monotonic in s and absolutely monotonic in ν if and only if β1, where Tν,α,β(s)=Kν2(s)-βKν-α(s)Kν+α(s) defined on s>0 and Kν(s) is the modified Bessel function of the second kind of order ν. Finally, we determine the necessary and sufficient conditions for the functions sTμ,α,1(s)/Tν,α,1(s), s(Tμ,α,1(s)+Tν,α,1(s))/(2T(μ+ν)/2,α,1(s)), and sdn1dνn1Tν,α,1(s)/dn2dνn2Tν,α,1(s) to be monotonic in s(0,) by employing the monotonicity rules.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.399
Classification : 33C10, 33B15, 26A48

Zhong-Xuan Mao 1 ; Jing-Feng Tian 2

1 Department of Mathematics and Physics, North China Electric Power University,Yonghua Street 619, 071003, Baoding, P. R. China
2 Department of Mathematics and Physics, North China Electric Power University, Yonghua Street 619, 071003, Baoding, P. R. China
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2023__361_G1_217_0,
     author = {Zhong-Xuan Mao and Jing-Feng Tian},
     title = {Monotonicity and complete monotonicity of some functions involving the modified {Bessel} functions of the second kind},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {217--235},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     year = {2023},
     doi = {10.5802/crmath.399},
     language = {en},
}
TY  - JOUR
AU  - Zhong-Xuan Mao
AU  - Jing-Feng Tian
TI  - Monotonicity and complete monotonicity of some functions involving the modified Bessel functions of the second kind
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 217
EP  - 235
VL  - 361
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.399
LA  - en
ID  - CRMATH_2023__361_G1_217_0
ER  - 
%0 Journal Article
%A Zhong-Xuan Mao
%A Jing-Feng Tian
%T Monotonicity and complete monotonicity of some functions involving the modified Bessel functions of the second kind
%J Comptes Rendus. Mathématique
%D 2023
%P 217-235
%V 361
%I Académie des sciences, Paris
%R 10.5802/crmath.399
%G en
%F CRMATH_2023__361_G1_217_0
Zhong-Xuan Mao; Jing-Feng Tian. Monotonicity and complete monotonicity of some functions involving the modified Bessel functions of the second kind. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 217-235. doi : 10.5802/crmath.399. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.399/

[1] Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Milton Abramowitz; I. A. Stegun, eds.), Dover Publications, 1964 | DOI | Zbl

[2] Árpád Baricz Bounds for modified Bessel functions of the first and second kinds, Proc. Edinb. Math. Soc., II. Ser., Volume 53 (2010) no. 3, pp. 575-599 | DOI | MR | Zbl

[3] Árpád Baricz Turán type inequalities for modified Bessel functions, Bull. Aust. Math. Soc., Volume 82 (2010) no. 2, pp. 254-264 | DOI | Zbl

[4] Árpád Baricz Bounds for Turánians of modified Bessel functions, Expo. Math., Volume 33 (2015) no. 2, pp. 223-251 | DOI | Zbl

[5] Árpád Baricz; Mourad E. H. Ismail Turán type inequalities for Tricomi confluent hypergeometric functions, Constr. Approx., Volume 37 (2013) no. 2, pp. 195-221 | DOI | Zbl

[6] Árpád Baricz; Dragana Jankov; Tibor K. Pogány Turán type inequalities for Krätzel functions, J. Math. Anal. Appl., Volume 388 (2012) no. 2, pp. 716-724 | DOI | Zbl

[7] Árpád Baricz; Tibor K. Pogány Turán determinants of Bessel functions, Forum Math., Volume 26 (2014) no. 1, pp. 295-322 | Zbl

[8] Árpád Baricz; Saminathan Ponnusamy On Turán type inequalities for modified Bessel functions, Proc. Am. Math. Soc., Volume 141 (2013) no. 7, pp. 523-532 | Zbl

[9] Árpád Baricz; Saminathan Ponnusamy; Sanjeev Singh Turán type inequalities for Struve functions, J. Math. Anal. Appl., Volume 445 (2017) no. 1, pp. 971-984 | DOI | Zbl

[10] S. Bernstein Sur les fonctions absolument monotones(French), Acta Math., Volume 52 (1928), pp. 1-66 | DOI | Zbl

[11] Mieczysław Biernacki; Jan Krzyż On the monotonicity of certain functionals in the theory of analytic functions, Ann. Univ. Mariae Curie-Skłodowska, Sect. A, Volume 9 (1957), pp. 135-147 | Zbl

[12] Martin Bohner; Tom Cuchta The Bessel difference equation, Proc. Am. Math. Soc., Volume 145 (2017) no. 4, pp. 1567-1580 | DOI | MR | Zbl

[13] Jeff Cheeger; Michael Gromov Mikhail Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds, J. Differ. Geom., Volume 17 (1982), pp. 15-53 | MR | Zbl

[14] Luc Devroye Simulating Bessel random variables, Stat. Probab. Lett., Volume 57 (2002) no. 3, pp. 249-257 | DOI | MR | Zbl

[15] Robert E. Gaunt Inequalities for some integrals involving modified Bessel functions, Proc. Am. Math. Soc., Volume 147 (2019) no. 7, pp. 2937-2951 | DOI | MR | Zbl

[16] Emil Grosswald The student t-distribution of any degrees of freedom is infinitely divisible, Z. Wahrscheinlichkeitstheor. Verw. Geb., Volume 36 (1976), pp. 103-109 | DOI | MR | Zbl

[17] Mourad E. H. Ismail Bessel functions and the infinite divisibility of the student t-distribution, Ann. Probab., Volume 5 (1977), pp. 582-585 | MR | Zbl

[18] Mourad E. H. Ismail; Martin E. Muldoon Monotonicity of the zeros of a cross-product of Bessel functions, SIAM J. Math. Anal., Volume 9 (1978), pp. 759-767 | DOI | MR | Zbl

[19] Feng Qi Decreasing properties of two ratios defined by three and four polygamma functions, C. R. Math. Acad. Sci. Paris, Volume 360 (2022), pp. 89-101 | MR | Zbl

[20] Christian Robert Modified Bessel functions and their applications in probability and statistics, Stat. Probab. Lett., Volume 9 (1990) no. 2, pp. 155-161 | DOI | MR | Zbl

[21] Javier Segura Bounds for ratios of modified Bessel functions and associated Turán-type inequalities, J. Math. Anal. Appl., Volume 374 (2011) no. 2, pp. 516-528 | DOI | Zbl

[22] Shan Tan; Licheng Jiao Multishrinkage: Analytical form for a Bayesian wavelet estimator based on the multivariate Laplacian model, Optics Lett., Volume 32 (2007) no. 17, pp. 2583-2585 | DOI

[23] Pál Turán On the zeros of the polynomials of Legendre, Čas. Pěst. Mat. Fys., Volume 75 (1950), pp. 113-122 | DOI | MR | Zbl

[24] Henk Van Haeringen Bound states for r-2-like potentials in one and three dimension, J. Math. Phys., Volume 19 (1978) no. 10, pp. 2171-2179 | DOI | MR

[25] George N. Watson A treatise on the theory of bessel functions, Cambridge University Press, 1944 | Zbl

[26] David V. Widder The Laplace Transform, Princeton Mathematical Series, 6, Princeton University Press, 1941 | MR | Zbl

[27] Zhen-Hang Yang; Yu-Ming Chu On approximating the modified Bessel function of the second kind, J. Inequal. Appl., Volume 2017 (2017), 41, 8 pages | MR | Zbl

[28] Zhen-Hang Yang; Yu-Ming Chu Monotonicity and inequalities involving the modified Bessel functions of the second kind, J. Math. Anal. Appl., Volume 508 (2022) no. 2, 125889, 23 pages | MR | Zbl

[29] Zhen-Hang Yang; Yu-Ming Chu; Miao-Kun Wang Monotonicity criterion for the quotient of power series with applications, J. Math. Anal. Appl., Volume 428 (2015) no. 1, pp. 587-604 | DOI | MR | Zbl

[30] Zhen-Hang Yang; Shen-Zhou Zheng The monotonicity and convexity for the ratios of modified Bessel functions of the second kind and applications, Proc. Am. Math. Soc., Volume 145 (2017) no. 7, pp. 2943-2958 | DOI | MR | Zbl

[31] Tie-Hong Zhao; Lei Shi; Yu-Ming Chu Convexity and concavity of the modified Bessel functions of the first kind with respect to Hölder means, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM, Volume 114 (2020) no. 2, 96, 14 pages | Zbl

  • Zhong-Xuan Mao; Jing-Feng Tian Delta L'Hospital-, Laplace- and variable limit-type monotonicity rules on time scales, Bulletin of the Malaysian Mathematical Sciences Society. Second Series, Volume 47 (2024) no. 1, p. 28 (Id/No 1) | DOI:10.1007/s40840-023-01599-8 | Zbl:7768230
  • Zhen Hang Yang; Jing-feng Tian High order monotonicity of a ratio of the modified Bessel function with applications, Hacettepe Journal of Mathematics and Statistics, Volume 53 (2024) no. 6, p. 1659 | DOI:10.15672/hujms.1244462
  • Zhong-Xuan Mao; Jing-Feng Tian Monotonicity rules for the ratio of two Laplace transforms with second-order oscillation, Integral Transforms and Special Functions, Volume 35 (2024) no. 12, pp. 670-690 | DOI:10.1080/10652469.2024.2376583 | Zbl:7955135
  • Gui-Zhi Zhang; Feng Qi On convexity and power series expansion for logarithm of normalized tail of power series expansion for square of tangent, Journal of Mathematical Inequalities, Volume 18 (2024) no. 3, pp. 937-952 | DOI:10.7153/jmi-2024-18-51 | Zbl:1547.41028
  • Zhong-Xuan Mao; Jing-Feng Tian Monotonicity rules for the ratio of two function series and two integral transforms, Proceedings of the American Mathematical Society, Volume 152 (2024) no. 6, pp. 2511-2527 | DOI:10.1090/proc/16728 | Zbl:7843762
  • Zhi-Hua Bao; Ravi Prakash Agarwal; Feng Qi; Wei-Shih Du Some Properties on Normalized Tails of Maclaurin Power Series Expansion of Exponential Function, Symmetry, Volume 16 (2024) no. 8, p. 989 | DOI:10.3390/sym16080989
  • Zhong-Xuan Mao; Lan-Xiang Yu; Jun-Yi Li; Jing-Feng Tian A best possible upper bound for the complete elliptic integral of the first kind, Bulletin of the Belgian Mathematical Society - Simon Stevin, Volume 30 (2023) no. 2, pp. 246-259 | DOI:10.36045/j.bbms.230228 | Zbl:1533.33027
  • Zhong-Xuan Mao; Jing-Fen Tian Monotonicity of three kinds of functions involving the Gaussian hypergeometric function, Bulletin of the Belgian Mathematical Society - Simon Stevin, Volume 30 (2023) no. 4, pp. 532-547 | DOI:10.36045/j.bbms.230913 | Zbl:7789467
  • Zhong-Xuan Mao; Jing-Feng Tian Monotonicity of three classes of functions involving modified Bessel functions of the second kind, Bulletin of the Iranian Mathematical Society, Volume 49 (2023) no. 5, p. 25 (Id/No 70) | DOI:10.1007/s41980-023-00821-4 | Zbl:1532.33010
  • Zhong-Xuan Mao; Jing-Feng Tian Delta complete monotonicity and completely monotonic degree on time scales, Bulletin of the Malaysian Mathematical Sciences Society. Second Series, Volume 46 (2023) no. 4, p. 23 (Id/No 142) | DOI:10.1007/s40840-023-01533-y | Zbl:1518.26020
  • Feng Qi; Ravi Prakash Agarwal Several Functions Originating from Fisher–Rao Geometry of Dirichlet Distributions and Involving Polygamma Functions, Mathematics, Volume 12 (2023) no. 1, p. 44 | DOI:10.3390/math12010044

Cité par 11 documents. Sources : Crossref, zbMATH

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: