Comptes Rendus
Equations aux dérivées partielles
Trace Operator’s Range Characterization for Sobolev Spaces on Lipschitz Domains of 2
Comptes Rendus. Mathématique, Volume 361 (2023), pp. 587-597.

On donne, d’abord, deux nouvelles applications relatives à la caractérisation de l’image de l’opérateur trace dans H 2 (Ω). Après cela, on caractérise l’image de l’opérateur trace dans les espaces de Sobolev W 3,p (Ω), Ω étant un domaine borné, connexe de 2 de frontière lipschitzienne.

We give, first, two new applications related to the range characterization of the range of trace operator in H 2 (Ω). After this, we characterize the range of trace operator in the Sobolev spaces W 3,p (Ω) when Ω is a connected bounded domain 2 with Lipschitz-continuous boundary.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.407

Aissa Aibèche 1 ; Cherif Amrouche 2 ; Bassem Bahouli 2, 3

1 Laboratoire de Mathématiques Appliquées, Université Ferhat Abbas, Sétif 1, Campus El Bez, 19137 Sétif, Algeria.
2 Laboratoire de Mathématiques et leurs Applications, Université de Pau et des Pays de l’Adour, Avenue de l’Université, 64000 Pau, France.
3 Laboratoire des Équations aux Dérivées Partielles Non Linéaires et Histoire des Mathématiques (EDPNL-HM), ENS Kouba, 16309 Alger, Algeria.
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2023__361_G3_587_0,
     author = {Aissa Aib\`eche and Cherif Amrouche and Bassem Bahouli},
     title = {Trace {Operator{\textquoteright}s} {Range} {Characterization} for {Sobolev} {Spaces} on {Lipschitz} {Domains} of $\protect \mathbb{R}^2$},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {587--597},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     year = {2023},
     doi = {10.5802/crmath.407},
     language = {en},
}
TY  - JOUR
AU  - Aissa Aibèche
AU  - Cherif Amrouche
AU  - Bassem Bahouli
TI  - Trace Operator’s Range Characterization for Sobolev Spaces on Lipschitz Domains of $\protect \mathbb{R}^2$
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 587
EP  - 597
VL  - 361
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.407
LA  - en
ID  - CRMATH_2023__361_G3_587_0
ER  - 
%0 Journal Article
%A Aissa Aibèche
%A Cherif Amrouche
%A Bassem Bahouli
%T Trace Operator’s Range Characterization for Sobolev Spaces on Lipschitz Domains of $\protect \mathbb{R}^2$
%J Comptes Rendus. Mathématique
%D 2023
%P 587-597
%V 361
%I Académie des sciences, Paris
%R 10.5802/crmath.407
%G en
%F CRMATH_2023__361_G3_587_0
Aissa Aibèche; Cherif Amrouche; Bassem Bahouli. Trace Operator’s Range Characterization for Sobolev Spaces on Lipschitz Domains of $\protect \mathbb{R}^2$. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 587-597. doi : 10.5802/crmath.407. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.407/

[1] Cherif Amrouche; Philippe G. Ciarlet; Liliana Gratie; Srinivasan Kesavan On the characterizations of matrix fields as linearized strain tensor fields, J. Math. Pures Appl., Volume 86 (2006) no. 2, pp. 116-132 | DOI | MR | Zbl

[2] Cherif Amrouche; Vivette Girault Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension, Czech. Math. J., Volume 44 (1994) no. 1, pp. 109-140 | DOI | MR | Zbl

[3] Cherif Amrouche; Nour El Houda Seloula L p -theory for vector potentials and Sobolev’s inequalities for vector fields: Application to the Stokes equations with pressure boundary conditions, Math. Models Methods Appl. Sci., Volume 23 (2013) no. 1, pp. 37-92 | DOI | MR | Zbl

[4] Annalisa Buffa; Martin Costabel; Dongwoo Sheen On traces for H(curl,Ω) for Lipschitz domains, J. Math. Anal. Appl., Volume 276 (2002) no. 2, pp. 845-867 | DOI | MR | Zbl

[5] Annalisa Buffa; Giuseppe Geymonat On traces for W 2,p (Ω) in Lipschitz domains, C. R. Acad. Sci. Paris Sér. I Math., Volume 332 (2001) no. 8, pp. 699-704 | DOI | MR | Zbl

[6] Philippe G. Ciarlet; Maria Malin; Cristinel Mardare On a vector version of a fundamental lemma of J. L. Lions, Chin. Ann. Math., Ser. B, Volume 39 (2018) no. 1, pp. 33-46 | DOI | MR | Zbl

[7] Bjorn E. J. Dahlberg; Carlos Eduardo Kenig; Gregory C. Verchota The Dirichlet problem for the biharmonic equation in Lipschitz domain, Ann. Inst. Fourier, Volume 36 (1986) no. 3, pp. 109-135 | DOI | Numdam | MR | Zbl

[8] Ricardo G. Durán; María Amelia Muschietti On the traces of W 2,p (Ω) for a Lipschitz domain, Rev. Mat. Complut., Volume 14 (2001) no. 2, pp. 371-377 | MR | Zbl

[9] Emilio Gagliardo Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni ni n variabili, Rend. Semin. Mat. Univ. Padova, Volume 27 (1957), pp. 284-305 | Zbl

[10] Giuseppe Geymonat Trace theorems for Sobolev spaces on Lipschitz domains. Necessary conditions, Ann. Math. Blaise Pascal, Volume 14 (2007) no. 2, pp. 187-197 | DOI | Numdam | MR | Zbl

[11] Giuseppe Geymonat; Françoise Krasucki On the existence of the Airy function in Lipschitz domains. Application to the traces of H 2 (Ω), C. R. Acad. Sci. Paris Sér. I Math., Volume 330 (2000) no. 5, pp. 355-360 | DOI | MR | Zbl

[12] Pierre Grisvard Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathematics, 24, Pitman Advanced Publishing Program, 1985 | Zbl

[13] Vladimir Maz’ya; Marius Mitrea; Tatyana O. Shaposhnikova The Dirichlet problem in Lipschitz domains for higher order elliptic systems with rough coefficients, J. Anal. Math., Volume 110 (2010), pp. 167-239 | DOI | MR | Zbl

[14] Jean Jacques Moreau Duality characterization of strain tensor distributions in arbitrary open set, J. Math. Anal. Appl., Volume 72 (1979), pp. 760-770 | DOI | MR | Zbl

[15] Jindřich Nečas Équations aux dérivées partielles, Séminaire de Mathématiques Supérieures, 19, Presses de l’Université de Montréal, 1966 | Zbl

Cité par Sources :

Commentaires - Politique