Comptes Rendus
Equations aux dérivées partielles
Trace Operator’s Range Characterization for Sobolev Spaces on Lipschitz Domains of 2
Comptes Rendus. Mathématique, Volume 361 (2023), pp. 587-597.

On donne, d’abord, deux nouvelles applications relatives à la caractérisation de l’image de l’opérateur trace dans H2(Ω). Après cela, on caractérise l’image de l’opérateur trace dans les espaces de Sobolev W3,p(Ω), Ω étant un domaine borné, connexe de 2 de frontière lipschitzienne.

We give, first, two new applications related to the range characterization of the range of trace operator in H2(Ω). After this, we characterize the range of trace operator in the Sobolev spaces W3,p(Ω) when Ω is a connected bounded domain 2 with Lipschitz-continuous boundary.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.407

Aissa Aibèche 1 ; Cherif Amrouche 2 ; Bassem Bahouli 2, 3

1 Laboratoire de Mathématiques Appliquées, Université Ferhat Abbas, Sétif 1, Campus El Bez, 19137 Sétif, Algeria.
2 Laboratoire de Mathématiques et leurs Applications, Université de Pau et des Pays de l’Adour, Avenue de l’Université, 64000 Pau, France.
3 Laboratoire des Équations aux Dérivées Partielles Non Linéaires et Histoire des Mathématiques (EDPNL-HM), ENS Kouba, 16309 Alger, Algeria.
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2023__361_G3_587_0,
     author = {Aissa Aib\`eche and Cherif Amrouche and Bassem Bahouli},
     title = {Trace {Operator{\textquoteright}s} {Range} {Characterization} for {Sobolev} {Spaces} on {Lipschitz} {Domains} of $\protect \mathbb{R}^2$},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {587--597},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     year = {2023},
     doi = {10.5802/crmath.407},
     language = {en},
}
TY  - JOUR
AU  - Aissa Aibèche
AU  - Cherif Amrouche
AU  - Bassem Bahouli
TI  - Trace Operator’s Range Characterization for Sobolev Spaces on Lipschitz Domains of $\protect \mathbb{R}^2$
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 587
EP  - 597
VL  - 361
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.407
LA  - en
ID  - CRMATH_2023__361_G3_587_0
ER  - 
%0 Journal Article
%A Aissa Aibèche
%A Cherif Amrouche
%A Bassem Bahouli
%T Trace Operator’s Range Characterization for Sobolev Spaces on Lipschitz Domains of $\protect \mathbb{R}^2$
%J Comptes Rendus. Mathématique
%D 2023
%P 587-597
%V 361
%I Académie des sciences, Paris
%R 10.5802/crmath.407
%G en
%F CRMATH_2023__361_G3_587_0
Aissa Aibèche; Cherif Amrouche; Bassem Bahouli. Trace Operator’s Range Characterization for Sobolev Spaces on Lipschitz Domains of $\protect \mathbb{R}^2$. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 587-597. doi : 10.5802/crmath.407. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.407/

[1] Cherif Amrouche; Philippe G. Ciarlet; Liliana Gratie; Srinivasan Kesavan On the characterizations of matrix fields as linearized strain tensor fields, J. Math. Pures Appl., Volume 86 (2006) no. 2, pp. 116-132 | DOI | MR | Zbl

[2] Cherif Amrouche; Vivette Girault Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension, Czech. Math. J., Volume 44 (1994) no. 1, pp. 109-140 | DOI | MR | Zbl

[3] Cherif Amrouche; Nour El Houda Seloula Lp-theory for vector potentials and Sobolev’s inequalities for vector fields: Application to the Stokes equations with pressure boundary conditions, Math. Models Methods Appl. Sci., Volume 23 (2013) no. 1, pp. 37-92 | DOI | MR | Zbl

[4] Annalisa Buffa; Martin Costabel; Dongwoo Sheen On traces for H(curl,Ω) for Lipschitz domains, J. Math. Anal. Appl., Volume 276 (2002) no. 2, pp. 845-867 | DOI | MR | Zbl

[5] Annalisa Buffa; Giuseppe Geymonat On traces for W2,p(Ω) in Lipschitz domains, C. R. Acad. Sci. Paris Sér. I Math., Volume 332 (2001) no. 8, pp. 699-704 | DOI | MR | Zbl

[6] Philippe G. Ciarlet; Maria Malin; Cristinel Mardare On a vector version of a fundamental lemma of J. L. Lions, Chin. Ann. Math., Ser. B, Volume 39 (2018) no. 1, pp. 33-46 | DOI | MR | Zbl

[7] Bjorn E. J. Dahlberg; Carlos Eduardo Kenig; Gregory C. Verchota The Dirichlet problem for the biharmonic equation in Lipschitz domain, Ann. Inst. Fourier, Volume 36 (1986) no. 3, pp. 109-135 | DOI | Numdam | MR | Zbl

[8] Ricardo G. Durán; María Amelia Muschietti On the traces of W2,p(Ω) for a Lipschitz domain, Rev. Mat. Complut., Volume 14 (2001) no. 2, pp. 371-377 | MR | Zbl

[9] Emilio Gagliardo Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni ni n variabili, Rend. Semin. Mat. Univ. Padova, Volume 27 (1957), pp. 284-305 | Zbl

[10] Giuseppe Geymonat Trace theorems for Sobolev spaces on Lipschitz domains. Necessary conditions, Ann. Math. Blaise Pascal, Volume 14 (2007) no. 2, pp. 187-197 | DOI | Numdam | MR | Zbl

[11] Giuseppe Geymonat; Françoise Krasucki On the existence of the Airy function in Lipschitz domains. Application to the traces of H2(Ω), C. R. Acad. Sci. Paris Sér. I Math., Volume 330 (2000) no. 5, pp. 355-360 | DOI | MR | Zbl

[12] Pierre Grisvard Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathematics, 24, Pitman Advanced Publishing Program, 1985 | Zbl

[13] Vladimir Maz’ya; Marius Mitrea; Tatyana O. Shaposhnikova The Dirichlet problem in Lipschitz domains for higher order elliptic systems with rough coefficients, J. Anal. Math., Volume 110 (2010), pp. 167-239 | DOI | MR | Zbl

[14] Jean Jacques Moreau Duality characterization of strain tensor distributions in arbitrary open set, J. Math. Anal. Appl., Volume 72 (1979), pp. 760-770 | DOI | MR | Zbl

[15] Jindřich Nečas Équations aux dérivées partielles, Séminaire de Mathématiques Supérieures, 19, Presses de l’Université de Montréal, 1966 | Zbl

Cité par Sources :

Commentaires - Politique