We use the canonical bundle formula for parabolic fibrations to give an inductive approach to the generalized abundance conjecture using nef reduction. In particular, we observe that generalized abundance holds for a klt pair if the nef dimension and or and .
Revised:
Accepted:
Published online:
Priyankur Chaudhuri 1
@article{CRMATH_2023__361_G1_417_0, author = {Priyankur Chaudhuri}, title = {An inductive approach to generalized abundance using nef reduction}, journal = {Comptes Rendus. Math\'ematique}, pages = {417--421}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, year = {2023}, doi = {10.5802/crmath.420}, language = {en}, }
Priyankur Chaudhuri. An inductive approach to generalized abundance using nef reduction. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 417-421. doi : 10.5802/crmath.420. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.420/
[1] The nef dimension of log minimal models (2004) (https://arxiv.org/abs/math/0411471)
[2] Shokurov’s Boundary property, J. Differ. Geom., Volume 67 (2004) no. 2, pp. 229-255 | MR | Zbl
[3] The moduli -divisor of an lc-trivial fibration, Compos. Math., Volume 141 (2005) no. 2, pp. 385-403 | DOI | MR | Zbl
[4] A reduction map for nef line bundles, Complex geometry (Göttingen, 2000), Springer, 2002, pp. 27-36 | DOI | Zbl
[5] A canonical bundle formula, J. Differ. Geom., Volume 56 (2000) no. 1, pp. 167-188 | MR | Zbl
[6] Reduction maps and minimal model theory, Compos. Math., Volume 149 (2013) no. 2, pp. 295-308 | DOI | MR | Zbl
[7] Introduction to the minimal model problem, Algebraic geometry, Sendai, 1985 (Advanced Studies in Pure Mathematics), Volume 10, North-Holland, 1987, pp. 283-360 | DOI | MR | Zbl
[8] Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, 134, Cambridge University Press, 1998 (with the collaboration of C. H. Clemens and A. Corti. Translated from the 1998 Japanese original. ISBN: 0-521-63277-3) | DOI | Zbl
[9] A travel guide to the canonical bundle formula, Birational Geometry and Moduli Spaces (Springer INdAM Series), Volume 39, Springer, 2020, pp. 37-55 | MR | Zbl
[10] On Generalised Abundance, I, Publ. Res. Inst. Math. Sci., Volume 56 (2020) no. 2, pp. 353-389 | DOI | MR | Zbl
[11] On Generalised Abundance, II, Peking Math. J., Volume 3 (2020) no. 1, pp. 1-46 | DOI | MR | Zbl
[12] Zariski-decomposition and abundance, MSJ Memoirs, 14, Mathematical Society of Japan, 2004 | Numdam | Zbl
Cited by Sources:
Comments - Policy