We introduce a sequence of monic reciprocal polynomials with integer coefficients having the central coefficients fixed as well as the peripheral coefficients. We prove that the ratio of the number of nonunimodular roots of to its degree has a limit when tends to infinity. We show that if the coefficients of a polynomial can be arbitrarily large in modulus then can be arbitrarily close to . It seems reasonable to believe that if the coefficients are bounded then the analogue of Lehmer’s Conjecture is true: either or there exists a gap so that could not be arbitrarily close to . We present an algorithm for calculating the limit ratio and a numerical method for its approximation. We estimated the limit ratio for a family of polynomials deduced from the powers of a given Salem number. We calculated the limit ratio of polynomials correlated to many bivariate polynomials having small Mahler measure introduced by Boyd and Mossinghoff.
Nous introduisons une suite de polynômes réciproques unitaires à coefficients entiers ayant les coefficients centraux fixes ainsi que les coefficients périphériques. Nous prouvons que le rapport du nombre de racines non unimodulaires de sur son degré a une limite lorsque tend vers l’infini. Nous montrons que si les coefficients d’un polynôme peuvent être arbitrairement grands en module alors peut être arbitrairement proche de . Il semble raisonnable de croire que si les coefficients sont bornés, alors l’analogue de la conjecture de Lehmer est vrai : soit , soit il existe un écart tel que ne puisse pas être arbitrairement proche de . Nous présentons un algorithme pour le calcul du rapport limite et une méthode numérique pour son approximation. Nous avons estimé le rapport limite pour une famille de polynômes déduits des puissances d’un nombre de Salem donné. Nous avons calculé le rapport limite des polynômes corrélés à de nombreux polynômes bivariés ayant une petite mesure de Mahler introduits par Boyd et Mossinghoff.
Revised:
Accepted:
Published online:
Dragan Stankov 1
@article{CRMATH_2023__361_G1_423_0, author = {Dragan Stankov}, title = {The number of nonunimodular roots of a reciprocal polynomial}, journal = {Comptes Rendus. Math\'ematique}, pages = {423--435}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, year = {2023}, doi = {10.5802/crmath.422}, language = {en}, }
Dragan Stankov. The number of nonunimodular roots of a reciprocal polynomial. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 423-435. doi : 10.5802/crmath.422. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.422/
[1] On Littlewood polynomials with prescribed number of zeros inside the unit disk, Can. J. Math., Volume 67 (2015) no. 3, pp. 507-526 | DOI | MR | Zbl
[2] On the zeros of cosine polynomials: solution to a problem of Littlewood, Ann. Math., Volume 167 (2008) no. 3, pp. 1109-1117 | DOI | MR | Zbl
[3] Small limit points of Mahler’s measure, Exp. Math., Volume 14 (2005) no. 4, pp. 403-414 | DOI | MR | Zbl
[4] Unimodular roots of reciprocal Littlewood polynomials, J. Korean Math. Soc., Volume 45 (2008) no. 3, pp. 835-840 | DOI | MR | Zbl
[5] On the Distribution of Roots of Polynomials, Ann. Math., Volume 51 (1950) no. 1, pp. 105-119 | DOI | MR | Zbl
[6] The N-measure for algebraic integers having all their conjugates in a sector, Rocky Mt. J. Math., Volume 50 (2020) no. 6, pp. 2035-2045 | MR | Zbl
[7] The S-measure for algebraic integers having all their conjugates in a sector, Rocky Mt. J. Math., Volume 50 (2020) no. 4, pp. 1313-1321 | MR | Zbl
[8] On Salem numbers, expansive polynomials and Stieltjes continued fractions, J. Théor. Nombres Bordeaux, Volume 27 (2015) no. 3, pp. 769-804 | DOI | Numdam | MR | Zbl
[9] Around the Unit Circle. Mahler measure, integer matrices and roots of unity., Universitext, Springer, 2021 | DOI | Zbl
[10] Littlewood Pisot numbers, J. Number Theory, Volume 117 (2006) no. 1, pp. 106-121 | DOI | MR | Zbl
[11] Power series with integral coefficients, Duke Math. J., Volume 12 (1945), pp. 153-172 | MR | Zbl
[12] Algebraic numbers and Fourier analysis, D. C. Heath and Company, 1963 | MR | Zbl
[13] The number of unimodular roots of some reciprocal polynomials, C. R. Math. Acad. Sci. Paris, Volume 358 (2020) no. 2, pp. 159-168 | Numdam | MR | Zbl
Cited by Sources:
Comments - Policy