We introduce a general class of symmetric polynomials that have saturated Newton polytope and their Newton polytope has integer decomposition property. The class covers numerous previously studied symmetric polynomials.
Revised:
Accepted:
Published online:
Duc-Khanh Nguyen 1; Giao Nguyen Thi Ngoc 2; Hiep Dang Tuan 3; Thuy Do Le Hai 4
@article{CRMATH_2023__361_G4_767_0, author = {Duc-Khanh Nguyen and Giao Nguyen Thi Ngoc and Hiep Dang Tuan and Thuy Do Le Hai}, title = {Newton polytope of good symmetric polynomials}, journal = {Comptes Rendus. Math\'ematique}, pages = {767--775}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, year = {2023}, doi = {10.5802/crmath.430}, language = {en}, }
TY - JOUR AU - Duc-Khanh Nguyen AU - Giao Nguyen Thi Ngoc AU - Hiep Dang Tuan AU - Thuy Do Le Hai TI - Newton polytope of good symmetric polynomials JO - Comptes Rendus. Mathématique PY - 2023 SP - 767 EP - 775 VL - 361 PB - Académie des sciences, Paris DO - 10.5802/crmath.430 LA - en ID - CRMATH_2023__361_G4_767_0 ER -
Duc-Khanh Nguyen; Giao Nguyen Thi Ngoc; Hiep Dang Tuan; Thuy Do Le Hai. Newton polytope of good symmetric polynomials. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 767-775. doi : 10.5802/crmath.430. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.430/
[1] Lattice points and lattice polytopes, Handbook of discrete and computational geometry, CRC Press, 2017, pp. 185-210
[2] Lattice polytopes from Schur and symmetric Grothendieck polynomials, Electron. J. Comb., Volume 28 (2021) no. 2, P2.45, 36 pages | MR | Zbl
[3] -vectors of Gorenstein polytopes, J. Comb. Theory, Ser. A, Volume 114 (2007) no. 1, pp. 65-76 | DOI | MR | Zbl
[4] Toric Varieties, Graduate Studies in Mathematics, 124, American Mathematical Society, 2011
[5] Newton polytopes and symmetric Grothendieck polynomials, C. R. Math. Acad. Sci. Paris, Volume 355 (2017) no. 8, pp. 831-834 | DOI | Numdam | MR | Zbl
[6] Sur les polyèdres rationnels homothétiques à dimensions, C. R. Math. Acad. Sci. Paris, Volume 254 (1962), pp. 616-618 | Zbl
[7] Introduction to Toric Varieties, Annals of Mathematics Studies, 131, Princeton University Press, 2016
[8] Incomparability graphs of -free posets are -positive, Discrete Math., Volume 157 (1996) no. 1-3, pp. 193-197 | DOI | MR | Zbl
[9] Newton polytopes and tropical geometry, Russ. Math. Surv., Volume 76 (2021) no. 1, pp. 91-175 | DOI | MR | Zbl
[10] Combinatorial Hopf algebras and K-homology of Grassmanians, Int. Math. Res. Not., Volume 2007 (2007) no. 9, RMN125, 48 pages | Zbl
[11] The Newton polytope and Lorentzian property of chromatic symmetric functions (2022) | arXiv
[12] Newton polytopes in algebraic combinatorics, Sel. Math., New Ser., Volume 25 (2019) no. 5, 66, 37 pages | MR | Zbl
[13] Special simplices and Gorenstein toric rings, J. Comb. Theory, Ser. A, Volume 113 (2006) no. 4, pp. 718-725 | DOI | MR | Zbl
[14] An inequality, J. Lond. Math. Soc., Volume 27 (1952) no. 1, pp. 1-6 | DOI
[15] Unimodality questions for integrally closed lattice polytopes, Ann. Comb., Volume 17 (2013) no. 3, pp. 571-589 | DOI | MR | Zbl
[16] On the number of reduced decompositions of elements of Coxeter groups, Eur. J. Comb., Volume 5 (1984) no. 4, pp. 359-372 | DOI | MR | Zbl
[17] A symmetric function generalization of the chromatic polynomial of a graph, Adv. Math., Volume 111 (1995) no. 1, pp. 166-194 | DOI | MR | Zbl
[18] Enumerative Combinatorics. Volume 2, Cambridge Studies in Advanced Mathematics, 62, Cambridge University Press, 1999 | DOI
[19] On immanants of Jacobi–Trudi matrices and permutations with restricted position, J. Comb. Theory, Ser. A, Volume 62 (1993) no. 2, pp. 261-279 | DOI | MR | Zbl
[20] Shifted tableaux and the projective representations of symmetric groups, Adv. Math., Volume 74 (1989) no. 1, pp. 87-134 | DOI | MR | Zbl
[21] Immanants of totally positive matrices are nonnegative, Bull. Lond. Math. Soc., Volume 23 (1991) no. 5, p. 442-428 | MR | Zbl
[22] Grobner bases and convex polytopes, University Lecture Series, 8, American Mathematical Society, 1996
Cited by Sources:
Comments - Policy