The generalized Frobenius number is the largest integer represented in at most
Révisé le :
Accepté le :
Publié le :
Takao Komatsu 1

@article{CRMATH_2023__361_G1_73_0, author = {Takao Komatsu}, title = {The {Frobenius} number associated with the number of representations for sequences of repunits}, journal = {Comptes Rendus. Math\'ematique}, pages = {73--89}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, year = {2023}, doi = {10.5802/crmath.394}, language = {en}, }
Takao Komatsu. The Frobenius number associated with the number of representations for sequences of repunits. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 73-89. doi : 10.5802/crmath.394. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.394/
[1] Sur les branches superlinéaires des courbes algébriques, C. R. Acad. Sci. Paris, Volume 222 (1946), pp. 1198-1200 | Zbl
[2] The Frobenius problem for numerical semigroup generated by sequences that satisfy a linear recurrence relation (2021) (https://arxiv.org/abs/2111.04899)
[3] The polynomial part of a restricted partition function related to the Frobenius problem, Electron. J. Comb., Volume 8 (2001) no. 1, 7, 5 pages | MR | Zbl
[4] An extreme family of generalized Frobenius numbers, Integers, Volume 11 (2011) no. 5, A24, pp. 639-645 | MR | Zbl
[5] Recreations in the theory of numbers – the queen of mathematics entertains, Dover Publications, 1966 | Zbl
[6] The number of solutions to
[7] On a problem of Frobenius, J. Reine Angew. Math., Volume 211 (1962), pp. 215-220 | Zbl
[8] On a problem of double partitions, Philos. Mag., Volume XX (1860), pp. 337-341 | DOI
[9] On the number of solutions of the Diophantine equation of Frobenius-General case, Math. Commun., Volume 8 (2003) no. 2, pp. 195-206 | MR | Zbl
[10] The Frobenius number for sequences of triangular numbers associated with number of solutions, Ann. Comb., Volume 26 (2022) no. 3, pp. 757-779 | DOI | MR | Zbl
[11] Sylvester power and weighted sums on the Frobenius set in arithmetic progression, Discrete Appl. Math., Volume 315 (2022), pp. 110-126 | DOI | MR | Zbl
[12] Weighted Sylvester sums on the Frobenius set, Ir. Math. Soc. Bull., Volume 87 (2021), pp. 21-29 | MR | Zbl
[13] Weighted Sylvester sums on the Frobenius set in more variables, Kyushu J. Math., Volume 76 (2022) no. 1, pp. 163-175 | DOI | MR | Zbl
[14] The Frobenius number for sequences of triangular and tetrahedral numbers, J. Number Theory, Volume 186 (2018), pp. 473-492 | DOI | MR | Zbl
[15] The Frobenius problem for Thabit numerical semigroups, J. Number Theory, Volume 155 (2015), pp. 85-99 | DOI | MR | Zbl
[16] The Frobenius problem for repunit numerical semigroups, Ramanujan J., Volume 40 (2016) no. 2, pp. 323-334 | DOI | MR | Zbl
[17] The Frobenius problem for Mersenne numerical semigroups, Math. Z., Volume 286 (2017) no. 1-2, pp. 741-749 | DOI | MR | Zbl
[18] On the linear diophantine problem of Frobenius, J. Reine Angew. Math., Volume 293/294 (1977), pp. 1-17 | MR | Zbl
[19] On the partition of numbers, Quart. J., Volume 1 (1857), pp. 141-152
[20] The number of solutions to
-
-Numerical semigroups of Pell triples, Journal of the Ramanujan Mathematical Society, Volume 40 (2025) no. 1, pp. 5-22 | Zbl:8020133 - p-Numerical Semigroups of Triples from the Three-Term Recurrence Relations, Axioms, Volume 13 (2024) no. 9, p. 608 | DOI:10.3390/axioms13090608
- FROBENIUS NUMBERS ASSOCIATED WITH DIOPHANTINE TRIPLES OF
, Bulletin of the Australian Mathematical Society (2024), p. 1 | DOI:10.1017/s0004972724000960 -
-numerical semigroups with -symmetric properties, Journal of Algebra and its Applications, Volume 23 (2024) no. 13, p. 24 (Id/No 2450216) | DOI:10.1142/s0219498824502165 | Zbl:7943142 - The p-Frobenius number for the triple of certain quadratic numbers, Logic Journal of the IGPL (2024) | DOI:10.1093/jigpal/jzae125
- p-Numerical Semigroups of the Triples of the Sequence
, Mathematical Methods for Engineering Applications, Volume 439 (2024), p. 15 | DOI:10.1007/978-3-031-49218-1_2 - The
-Frobenius problems for the sequence of generalized repunits, Results in Mathematics, Volume 79 (2024) no. 1, p. 25 (Id/No 26) | DOI:10.1007/s00025-023-02055-6 | Zbl:1529.20095 - On the determination of
-Frobenius and related numbers using the -Apéry set, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A: Matemáticas. RACSAM, Volume 118 (2024) no. 2, p. 17 (Id/No 58) | DOI:10.1007/s13398-024-01556-5 | Zbl:1544.11029 - Frobenius Numbers Associated with Diophantine Triples of x2-y2=zr, Symmetry, Volume 16 (2024) no. 7, p. 855 | DOI:10.3390/sym16070855
- The p-Frobenius Number for the Triple of the Generalized Star Numbers, Symmetry, Volume 16 (2024) no. 8, p. 1090 | DOI:10.3390/sym16081090
- The Frobenius Number for Jacobsthal Triples Associated with Number of Solutions, Axioms, Volume 12 (2023) no. 2, p. 98 | DOI:10.3390/axioms12020098
- p-Numerical Semigroups of Generalized Fibonacci Triples, Symmetry, Volume 15 (2023) no. 4, p. 852 | DOI:10.3390/sym15040852
- The p-Numerical Semigroup of the Triple of Arithmetic Progressions, Symmetry, Volume 15 (2023) no. 7, p. 1328 | DOI:10.3390/sym15071328
- The Frobenius number for sequences of triangular numbers associated with number of solutions, Annals of Combinatorics, Volume 26 (2022) no. 3, pp. 757-779 | DOI:10.1007/s00026-022-00594-3 | Zbl:1498.11093
Cité par 14 documents. Sources : Crossref, zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier