In this Note, we consider traveling waves in a reaction-diffusion equation in dimension one. Motivated by the motion of dislocations in crystals, we introduce an additive parameter
Dans cette Note, nous considérons des ondes progressives pour une équation de réaction-diffusion en dimension un. Motivés par le mouvement de dislocations dans les cristaux, nous introduisons un paramètre additif
Révisé le :
Accepté le :
Publié le :
Mohammad Al Haj 1 ; Régis Monneau 2, 3

@article{CRMATH_2023__361_G4_777_0, author = {Mohammad Al Haj and R\'egis Monneau}, title = {The velocity diagram for traveling waves}, journal = {Comptes Rendus. Math\'ematique}, pages = {777--782}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, year = {2023}, doi = {10.5802/crmath.433}, language = {en}, }
Mohammad Al Haj; Régis Monneau. The velocity diagram for traveling waves. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 777-782. doi : 10.5802/crmath.433. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.433/
[1] Existence and uniqueness of traveling waves for fully overdamped Frenkel-Kontorova models, Arch. Ration. Mech. Anal., Volume 210 (2013) no. 1, pp. 45-99 | DOI | MR | Zbl
[2] The velocity diagram of traveling waves for discrete reaction-diffusion equations (2022) (https://hal.science/hal-03777384)
[3] Multidimensional nonlinear diffusion arising in population genetics, Adv. Math., Volume 30 (1978), pp. 33-76 | DOI | MR | Zbl
[4] Traveling wave solutions to combustion models and their singular limits, SIAM J. Math. Anal., Volume 16 (1985) no. 6, pp. 1207-1242 | DOI | MR | Zbl
[5] On the method of moving planes and the sliding method, Bol. Soc. Bras. Mat., Volume 22 (1991) no. 1, pp. 1-37 | DOI | MR | Zbl
[6] Dynamics of internal layers and diffusive interfaces, CBMS-NSF Regional Conference Series in Applied Mathematics, 53, Society for Industrial and Applied Mathematics, 1988 | DOI
[7] The wave of advance of advantageous genes, Ann. Eugenics, London, Volume 7 (1937), pp. 335-369 | Zbl
[8] Homogenization of fully overdamped Frenkel-Kontorova models, J. Differ. Equations, Volume 246 (2009) no. 3, pp. 1057-1097 | DOI | MR | Zbl
[9] Etude de l’équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, Bull. Univ. État Moscou, Sér. Int., Sect. A: Math. et Mécan., Volume 1 (1937) no. 6, pp. 1-26
Cité par Sources :
Commentaires - Politique