We establish several optimal extension theorems of openness type on weakly pseudoconvex Kähler manifolds. We prove a product property for certain minimal extensions, which generalizes the product property of Bergman kernels. We describe a different approach to the Suita conjecture and its generalizations, which is based on a log-concavity for certain minimal integrals.
Nous établissons quelques théorèmes d’extension optimaux pour les formes ouvertes sur les variété Kähler faiblement pseudoconvexes. Nous prouvons les propriétés de produit de certaines extensions minimales de , qui généralisent les propriétés de produit du noyau Bergman. Sur la base de la concavité logarithmique de certaines intégrales minimales de , nous donnons une méthode différente pour la conjecture de Suita et son extension.
Accepted:
Published online:
Wang Xu 1; Xiangyu Zhou 2
@article{CRMATH_2023__361_G3_679_0, author = {Wang Xu and Xiangyu Zhou}, title = {Optimal $L^2$ {Extensions} of {Openness} {Type} and {Related} {Topics}}, journal = {Comptes Rendus. Math\'ematique}, pages = {679--683}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, year = {2023}, doi = {10.5802/crmath.437}, language = {en}, }
Wang Xu; Xiangyu Zhou. Optimal $L^2$ Extensions of Openness Type and Related Topics. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 679-683. doi : 10.5802/crmath.437. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.437/
[1] Suita conjecture and the Ohsawa-Takegoshi extension theorem, Invent. Math., Volume 193 (2013) no. 1, pp. 149-158 | DOI | MR | Zbl
[2] A lower bound for the Bergman kernel and the Bourgain-Milman inequality, Geometric aspects of functional analysis, Springer, 2014, pp. 53-63 | DOI | MR | Zbl
[3] One dimensional estimates for the Bergman kernel and logarithmic capacity, Proc. Am. Math. Soc., Volume 146 (2018) no. 6, pp. 2489-2495 | DOI | MR | Zbl
[4] Estimations pour l’opérateur d’un fibré vectoriel holomorphe semi-positif au-dessus d’une variété kählérienne complète, Ann. Sci. Éc. Norm. Supér., Volume 15 (1982) no. 3, pp. 457-511 | DOI | Numdam | MR | Zbl
[5] Scindage holomorphe d’un morphisme de fibrés vectoriels semi-positifs avec estimations , Seminar Pierre Lelong-Henri Skoda (Analysis), 1980/1981, Springer, 1982, pp. 77-107 | DOI | MR | Zbl
[6] Complex analytic and differential geometry (2012) (e-book)
[7] Pseudo-effective line bundles on compact Kähler manifolds, Int. J. Math., Volume 12 (2001) no. 6, pp. 689-741 | DOI | MR | Zbl
[8] A sharp effectiveness result of Demailly’s strong openness conjecture, Adv. Math., Volume 348 (2019), pp. 51-80 | DOI | MR | Zbl
[9] Concavity of minimal integrals releted to multiplier ideal sheaves, Peking Math. J. (2022) (https://doi.org/10.1007/s42543-021-00047-5) | Zbl
[10] Concavity property of minimal integrals with Lebesgue measurable gain II (2022) | arXiv
[11] Optimal constant problem in the extension theorem, C. R. Math. Acad. Sci. Paris, Volume 350 (2012) no. 15-16, pp. 753-756 | DOI | Numdam | MR | Zbl
[12] Optimal constant in an extension problem and a proof of a conjecture of Ohsawa, Sci. China Math., Volume 58 (2015) no. 1, pp. 35-59 | DOI | MR | Zbl
[13] A solution of an extension problem with an optimal estimate and applications, Ann. Math., Volume 181 (2015) no. 3, pp. 1139-1208 | DOI | MR | Zbl
[14] On sharper estimates of Ohsawa-Takegoshi -extension theorem, J. Math. Soc. Japan, Volume 71 (2019) no. 3, pp. 909-914 | MR | Zbl
[15] Extension d’une fonction définie sur une sous-variété avec contrôle de la croissance, Séminaire Pierre Lelong-Henri Skoda (Analyse), Année 1976/77, Springer, 1978, pp. 126-133 | DOI | MR | Zbl
[16] Capacities and kernels on Riemann surfaces, Arch. Ration. Mech. Anal., Volume 46 (1972), pp. 212-217 | DOI | MR | Zbl
[17] Optimal extensions of openness type (2022) | arXiv
[18] An optimal extension theorem on weakly pseudoconvex Kähler manifolds, J. Differ. Geom., Volume 110 (2018) no. 1, pp. 135-186 | DOI | MR | Zbl
Cited by Sources:
Comments - Policy