Comptes Rendus
Complex analysis and geometry
Optimal L 2 Extensions of Openness Type and Related Topics
Comptes Rendus. Mathématique, Volume 361 (2023), pp. 679-683.

We establish several optimal L 2 extension theorems of openness type on weakly pseudoconvex Kähler manifolds. We prove a product property for certain minimal L 2 extensions, which generalizes the product property of Bergman kernels. We describe a different approach to the Suita conjecture and its generalizations, which is based on a log-concavity for certain minimal L 2 integrals.

Nous établissons quelques théorèmes d’extension optimaux L 2 pour les formes ouvertes sur les variété Kähler faiblement pseudoconvexes. Nous prouvons les propriétés de produit de certaines extensions minimales de L 2 , qui généralisent les propriétés de produit du noyau Bergman. Sur la base de la concavité logarithmique de certaines intégrales minimales de L 2 , nous donnons une méthode différente pour la conjecture de Suita et son extension.

Received:
Accepted:
Published online:
DOI: 10.5802/crmath.437
Classification: 32D15, 32A36, 32L05, 32W05, 32E10, 14C30, 30C40

Wang Xu 1; Xiangyu Zhou 2

1 School of Mathematical Sciences, Peking University, Beijing, 100871, P. R. China
2 Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, P. R. China
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMATH_2023__361_G3_679_0,
     author = {Wang Xu and Xiangyu Zhou},
     title = {Optimal $L^2$ {Extensions} of {Openness} {Type} and {Related} {Topics}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {679--683},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     year = {2023},
     doi = {10.5802/crmath.437},
     language = {en},
}
TY  - JOUR
AU  - Wang Xu
AU  - Xiangyu Zhou
TI  - Optimal $L^2$ Extensions of Openness Type and Related Topics
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 679
EP  - 683
VL  - 361
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.437
LA  - en
ID  - CRMATH_2023__361_G3_679_0
ER  - 
%0 Journal Article
%A Wang Xu
%A Xiangyu Zhou
%T Optimal $L^2$ Extensions of Openness Type and Related Topics
%J Comptes Rendus. Mathématique
%D 2023
%P 679-683
%V 361
%I Académie des sciences, Paris
%R 10.5802/crmath.437
%G en
%F CRMATH_2023__361_G3_679_0
Wang Xu; Xiangyu Zhou. Optimal $L^2$ Extensions of Openness Type and Related Topics. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 679-683. doi : 10.5802/crmath.437. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.437/

[1] Zbigniew Błocki Suita conjecture and the Ohsawa-Takegoshi extension theorem, Invent. Math., Volume 193 (2013) no. 1, pp. 149-158 | DOI | MR | Zbl

[2] Zbigniew Błocki A lower bound for the Bergman kernel and the Bourgain-Milman inequality, Geometric aspects of functional analysis, Springer, 2014, pp. 53-63 | DOI | MR | Zbl

[3] Zbigniew Błocki; Włodzimierz Zwonek One dimensional estimates for the Bergman kernel and logarithmic capacity, Proc. Am. Math. Soc., Volume 146 (2018) no. 6, pp. 2489-2495 | DOI | MR | Zbl

[4] Jean-Pierre Demailly Estimations L 2 pour l’opérateur ¯ d’un fibré vectoriel holomorphe semi-positif au-dessus d’une variété kählérienne complète, Ann. Sci. Éc. Norm. Supér., Volume 15 (1982) no. 3, pp. 457-511 | DOI | Numdam | MR | Zbl

[5] Jean-Pierre Demailly Scindage holomorphe d’un morphisme de fibrés vectoriels semi-positifs avec estimations L 2 , Seminar Pierre Lelong-Henri Skoda (Analysis), 1980/1981, Springer, 1982, pp. 77-107 | DOI | MR | Zbl

[6] Jean-Pierre Demailly Complex analytic and differential geometry (2012) (e-book)

[7] Jean-Pierre Demailly; Thomas Peternell; Michael Schneider Pseudo-effective line bundles on compact Kähler manifolds, Int. J. Math., Volume 12 (2001) no. 6, pp. 689-741 | DOI | MR | Zbl

[8] Qi’an Guan A sharp effectiveness result of Demailly’s strong openness conjecture, Adv. Math., Volume 348 (2019), pp. 51-80 | DOI | MR | Zbl

[9] Qi’an Guan; Zhitong Mi Concavity of minimal L 2 integrals releted to multiplier ideal sheaves, Peking Math. J. (2022) (https://doi.org/10.1007/s42543-021-00047-5) | Zbl

[10] Qi’an Guan; Zhitong Mi; Zheng Yuan Concavity property of minimal L 2 integrals with Lebesgue measurable gain II (2022) | arXiv

[11] Qi’an Guan; Xiangyu Zhou Optimal constant problem in the L 2 extension theorem, C. R. Math. Acad. Sci. Paris, Volume 350 (2012) no. 15-16, pp. 753-756 | DOI | Numdam | MR | Zbl

[12] Qi’an Guan; Xiangyu Zhou Optimal constant in an L 2 extension problem and a proof of a conjecture of Ohsawa, Sci. China Math., Volume 58 (2015) no. 1, pp. 35-59 | DOI | MR | Zbl

[13] Qi’an Guan; Xiangyu Zhou A solution of an L 2 extension problem with an optimal estimate and applications, Ann. Math., Volume 181 (2015) no. 3, pp. 1139-1208 | DOI | MR | Zbl

[14] Genki Hosono On sharper estimates of Ohsawa-Takegoshi L 2 -extension theorem, J. Math. Soc. Japan, Volume 71 (2019) no. 3, pp. 909-914 | MR | Zbl

[15] B. Jennane Extension d’une fonction définie sur une sous-variété avec contrôle de la croissance, Séminaire Pierre Lelong-Henri Skoda (Analyse), Année 1976/77, Springer, 1978, pp. 126-133 | DOI | MR | Zbl

[16] Nobuyuki Suita Capacities and kernels on Riemann surfaces, Arch. Ration. Mech. Anal., Volume 46 (1972), pp. 212-217 | DOI | MR | Zbl

[17] Wang Xu; Xiangyu Zhou Optimal L 2 extensions of openness type (2022) | arXiv

[18] Xiangyu Zhou; Langfeng Zhu An optimal L 2 extension theorem on weakly pseudoconvex Kähler manifolds, J. Differ. Geom., Volume 110 (2018) no. 1, pp. 135-186 | DOI | MR | Zbl

Cited by Sources:

Comments - Policy