Nous établissons quelques théorèmes d’extension optimaux
We establish several optimal
Accepté le :
Publié le :
Wang Xu 1 ; Xiangyu Zhou 2

@article{CRMATH_2023__361_G3_679_0, author = {Wang Xu and Xiangyu Zhou}, title = {Optimal $L^2$ {Extensions} of {Openness} {Type} and {Related} {Topics}}, journal = {Comptes Rendus. Math\'ematique}, pages = {679--683}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, year = {2023}, doi = {10.5802/crmath.437}, language = {en}, }
Wang Xu; Xiangyu Zhou. Optimal $L^2$ Extensions of Openness Type and Related Topics. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 679-683. doi : 10.5802/crmath.437. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.437/
[1] Suita conjecture and the Ohsawa-Takegoshi extension theorem, Invent. Math., Volume 193 (2013) no. 1, pp. 149-158 | DOI | MR | Zbl
[2] A lower bound for the Bergman kernel and the Bourgain-Milman inequality, Geometric aspects of functional analysis, Springer, 2014, pp. 53-63 | DOI | MR | Zbl
[3] One dimensional estimates for the Bergman kernel and logarithmic capacity, Proc. Am. Math. Soc., Volume 146 (2018) no. 6, pp. 2489-2495 | DOI | MR | Zbl
[4] Estimations
[5] Scindage holomorphe d’un morphisme de fibrés vectoriels semi-positifs avec estimations
[6] Complex analytic and differential geometry (2012) (e-book)
[7] Pseudo-effective line bundles on compact Kähler manifolds, Int. J. Math., Volume 12 (2001) no. 6, pp. 689-741 | DOI | MR | Zbl
[8] A sharp effectiveness result of Demailly’s strong openness conjecture, Adv. Math., Volume 348 (2019), pp. 51-80 | DOI | MR | Zbl
[9] Concavity of minimal
[10] Concavity property of minimal
[11] Optimal constant problem in the
[12] Optimal constant in an
[13] A solution of an
[14] On sharper estimates of Ohsawa-Takegoshi
[15] Extension d’une fonction définie sur une sous-variété avec contrôle de la croissance, Séminaire Pierre Lelong-Henri Skoda (Analyse), Année 1976/77, Springer, 1978, pp. 126-133 | DOI | MR | Zbl
[16] Capacities and kernels on Riemann surfaces, Arch. Ration. Mech. Anal., Volume 46 (1972), pp. 212-217 | DOI | MR | Zbl
[17] Optimal
[18] An optimal
- Concavity property of minimal
Integrals with Lebesgue measurable gain, Nagoya Mathematical Journal, Volume 252 (2023), pp. 842-905 | DOI:10.1017/nmj.2023.12 | Zbl:1528.32013
Cité par 1 document. Sources : zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier