Comptes Rendus
Algebra, Combinatorics
q-Rationals and Finite Schubert Varieties
Comptes Rendus. Mathématique, Volume 361 (2023), pp. 807-818.

The classical q-analogue of the integers was recently generalized by Morier-Genoud and Ovsienko to give q-analogues of rational numbers. Some combinatorial interpretations are already known, namely as the rank generating functions for certain partially ordered sets. We give a new interpretation, showing that the numerators of q-rationals count the sizes of certain varieties over finite fields, which are unions of open Schubert cells in some Grassmannian.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.446
Classification: 05A15, 05A17

Nicholas Ovenhouse 1

1 Department of Mathematics, Yale University, 10 Hillhouse Ave, New Haven CT, USA
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMATH_2023__361_G4_807_0,
     author = {Nicholas Ovenhouse},
     title = {$q${-Rationals} and {Finite} {Schubert} {Varieties}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {807--818},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     year = {2023},
     doi = {10.5802/crmath.446},
     language = {en},
}
TY  - JOUR
AU  - Nicholas Ovenhouse
TI  - $q$-Rationals and Finite Schubert Varieties
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 807
EP  - 818
VL  - 361
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.446
LA  - en
ID  - CRMATH_2023__361_G4_807_0
ER  - 
%0 Journal Article
%A Nicholas Ovenhouse
%T $q$-Rationals and Finite Schubert Varieties
%J Comptes Rendus. Mathématique
%D 2023
%P 807-818
%V 361
%I Académie des sciences, Paris
%R 10.5802/crmath.446
%G en
%F CRMATH_2023__361_G4_807_0
Nicholas Ovenhouse. $q$-Rationals and Finite Schubert Varieties. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 807-818. doi : 10.5802/crmath.446. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.446/

[1] Rachel Bailey; Emily Gunawan Cluster algebras and binary subwords, Order, Volume 39 (2022) no. 1, pp. 55-69 | DOI | MR | Zbl

[2] İlke Çanakçı; Ralf Schiffler Cluster algebras and continued fractions, Compos. Math., Volume 154 (2018) no. 3, pp. 565-593 | DOI | MR | Zbl

[3] İlke Çanakçı; Ralf Schiffler Snake graphs and continued fractions, Eur. J. Comb., Volume 86 (2020), 103081 | MR | Zbl

[4] Andrew Claussen Expansion Posets for Polygon Cluster Algebras (2020) | arXiv

[5] William Fulton Young tableaux: with applications to representation theory and geometry, London Mathematical Society Student Texts, 35, Cambridge University Press, 1997

[6] Ludivine Leclere; Sophie Morier-Genoud q-Deformations in the modular group and of the real quadratic irrational numbers, Adv. Appl. Math., Volume 130 (2021), 102223, 28 pages | MR | Zbl

[7] Ludivine Leclere; Sophie Morier-Genoud Quantum continuants, quantum rotundus and triangulations of annuli (2022) | arXiv

[8] Thomas McConville; Bruce E. Sagan; Clifford Smyth On a rank-unimodality conjecture of Morier–Genoud and Ovsienko, Discrete Math., Volume 344 (2021) no. 8, 112483, 13 pages | MR | Zbl

[9] Sophie Morier-Genoud; Valentin Ovsienko q-Continued Fractions, Forum Math. Sigma, Volume 8 (2020), e13, 55 pages | Zbl

[10] Gregg Musiker; Ralf Schiffler Cluster expansion formulas and perfect matchings, J. Algebr. Comb., Volume 32 (2010) no. 2, pp. 187-209 | DOI | MR | Zbl

[11] Gregg Musiker; Ralf Schiffler; Lauren Williams Positivity for cluster algebras from surfaces, Adv. Math., Volume 227 (2011) no. 6, pp. 2241-2308 | DOI | MR | Zbl

[12] Gregg Musiker; Lauren Williams Matrix formulae and skein relations for cluster algebras from surfaces, Int. Math. Res. Not., Volume 2013 (2013) no. 13, pp. 2891-2944 | DOI | MR | Zbl

[13] Ezgi Kantarcı Oğuz; Mohan Ravichandran Rank polynomials of fence posets are unimodal, Discrete Math., Volume 346 (2023) no. 2, 113218, 20 pages | MR | Zbl

[14] Alexander Postnikov Total positivity, Grassmannians, and networks (2006) (https://arxiv.org/abs/math/0609764)

[15] James Propp The combinatorics of frieze patterns and Markoff numbers, Integers, Volume 20 (2020), A12, 38 pages | MR | Zbl

[16] Michelle Rabideau F-polynomial formula from continued fractions, J. Algebra, Volume 509 (2018), pp. 467-475 | DOI | MR | Zbl

[17] Richard Stanley Enumerative Combinatorics Vol. 1, Cambridge Studies in Advanced Mathematics, 49, Cambridge University Press, 2012, xiii+626 pages | Zbl

Cited by Sources:

Comments - Policy