Comptes Rendus
Systèmes dynamiques
Generalized logistic equation on Networks
Comptes Rendus. Mathématique, Volume 361 (2023), pp. 911-934.

In this paper, we consider a general single species model in a heterogeneous environment of n patches (n2), where each patch follows a generalized logistic law. First, we prove the global stability of the model. Second, in the case of perfect mixing, i.e. when the migration rate tends to infinity, the total population follows a generalized logistic law with a carrying capacity which in general is different from the sum of the n carrying capacities. Next, we give some properties of the total equilibrium population and we compute its derivative at no dispersal. In some particular cases, we determine the conditions under which fragmentation and migration can lead to a total equilibrium population which might be greater or smaller than the sum of the n carrying capacities. Finally, we study an example of two-patch model where the first patch follows a logistic law and the second a Richard’s law, we give a complete classification of the model parameter space as to whether dispersal is beneficial or detrimental to the sum of two carrying capacities.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.460
Classification : 37N25, 92D25, 34D23, 34D15
Bilel Elbetch 1

1 Department of Mathematics, University Dr. Moulay Tahar of Saida, Algeria
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2023__361_G5_911_0,
     author = {Bilel Elbetch},
     title = {Generalized logistic equation on {Networks}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {911--934},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     year = {2023},
     doi = {10.5802/crmath.460},
     language = {en},
}
TY  - JOUR
AU  - Bilel Elbetch
TI  - Generalized logistic equation on Networks
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 911
EP  - 934
VL  - 361
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.460
LA  - en
ID  - CRMATH_2023__361_G5_911_0
ER  - 
%0 Journal Article
%A Bilel Elbetch
%T Generalized logistic equation on Networks
%J Comptes Rendus. Mathématique
%D 2023
%P 911-934
%V 361
%I Académie des sciences, Paris
%R 10.5802/crmath.460
%G en
%F CRMATH_2023__361_G5_911_0
Bilel Elbetch. Generalized logistic equation on Networks. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 911-934. doi : 10.5802/crmath.460. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.460/

[1] Roger Arditi; Claude Lobry; Tewfik Sari In dispersal always beneficial to carrying capacity? New insights from the multi-patch logistic equation, Theor. Popul. Biol., Volume 106 (2015), pp. 45-59 | DOI | Zbl

[2] Roger Arditi; Claude Lobry; Tewfik Sari Asymmetric dispersal in the multi-patch logistic equation, Theor. Popul. Biol., Volume 120 (2018), pp. 11-15 | DOI | Zbl

[3] Julien Arino Diseases in metapopulations, Modeling and Dynamics of Infectious Diseases (Zhien Ma; Yicang Zhou; Jianhong Wu, eds.) (Series in Contemporary Applied Mathematics), Volume 11, World Scientific, 2009, pp. 64-122 | DOI

[4] Julien Arino; Nicolas Bajeux; Steve Kirkland Number of Source Patches Required for Population Persistence in a Source-Sink Metapopulation with Explicit Movement, Bull. Math. Biol., Volume 81 (2019), pp. 1916-1942 | DOI | Zbl

[5] L. Von Bertalanffy A quantitative theory of organic growth, Hum. Biol., Volume 10 (1938) no. 2, pp. 181-213 | DOI

[6] A. A. Blumberg Logistic Growth Rate Functions, J. Theor. Biol., Volume 21 (1968) no. 1, pp. 42-44 | DOI

[7] C. Cosner; J. C. Beier; R. S. Cantrell; D. Impoinvil; L. Kapitanski; M. D. Potts; A. Troyo; S. Ruan The effects of human movement on the persistence of vector-borne diseases, J. Theor. Biol., Volume 258 (2009), pp. 550-560 | DOI

[8] Aleksandar Cvetković Stabilizing the Metzler matrices with applications to dynamical systems, Calcolo, Volume 57 (2020) no. 1 | DOI | Zbl

[9] Donald L. DeAngelis; Wei-Ming Ni; Bo Zhang Effects of diffusion on total biomass in heterogeneous continuous and discrete-patch systems, Theor. Ecol., Volume 9 (2016), pp. 443-453 | DOI

[10] Donald L. DeAngelis; Curtis C. Travis; Wilfred M. Post Persistence and stability of seed-dispersel species in a patchy environment, Theor. Popul. Biol., Volume 16 (1979) no. 2, pp. 107-125 | DOI | Zbl

[11] Donald L. DeAngelis; Bo Zhang Effects of dispersal in a non-uniform environment on population dynamics and competition: a patch model approach, Discrete Contin. Dyn. Syst., Volume 19 (2014) no. 10, pp. 3087-3104 | DOI | Zbl

[12] Bilel Elbetch Effect of dispersal in Two-patch environment with Richards growth on population dynamics, J. Innov. Appl. Math. Comput. Sci., Volume 2 (2022) no. 3, pp. 41-68 | DOI

[13] Bilel Elbetch Effects of rapid population growth on total biomass in Multi-patch environment (2022) (https://hal.science/hal-03698445)

[14] Bilel Elbetch; Tounsia Benzekri; Daniel Massart; Tewfik Sari The multi-patch logistic equation, Discrete Contin. Dyn. Syst., Ser. B, Volume 26 (2021) no. 12, pp. 6405-6424 | DOI | Zbl

[15] Bilel Elbetch; Tounsia Benzekri; Daniel Massart; Tewfik Sari The multi-patch logistic equation with asymmetric migration, Rev. Integr., Volume 40 (2022) no. 1, pp. 25-57 | DOI | Zbl

[16] Herbert I. Freedman; Bindhyachal Rai; Paul Waltman Mathematical Models of Population Interactions with Dispersal II: Differential Survival in a Change of Habitat, J. Math. Anal. Appl., Volume 115 (1986), pp. 140-154 | DOI | Zbl

[17] Herbert I. Freedman; Yasuhiro Takeuchi Global stability and predator dynamics in a model of prey dispersal in a patchy environment, Nonlinear Anal., Theory Methods Appl., Volume 13 (1989) no. 8, pp. 993-1002 | DOI | Zbl

[18] Herbert I. Freedman; Paul Waltman Mathematical Models of Population Interactions with Dispersal I: Stabilty of two habitats with and without a predator, SIAM J. Appl. Math., Volume 32 (1977), pp. 631-648 | DOI | Zbl

[19] Felix Gantmacher The Theory of Matrices, Volume 2, AMS Chelsea Publishing, 2000

[20] Daozhou Gao How does dispersal affect the infection size?, SIAM J. Appl. Math., Volume 80 (2020) no. 5, pp. 2144-2169 | DOI | Zbl

[21] Daozhou Gao; Dong Chao-Ping Fast diffusion inhibits disease outbreaks, Proc. Am. Math. Soc., Volume 148 (2020) no. 4, pp. 1709-1722 | DOI | Zbl

[22] Daozhou Gao; Shigui Ruan A multipatch malaria model with logistic growth, SIAM J. Appl. Math., Volume 72 (2012) no. 3, pp. 819-841 | DOI | Zbl

[23] Hongbin Guo; Michael Y. Li; Zhisheng Shuai Global stability of the endemic equilibrium of multigroup SIR epidemic models, Can. Appl. Math. Q., Volume 14 (2006), pp. 259-284 | Zbl

[24] James W. Haefner Modelling Biological Systems: Principles and Applications, Chapman & Hall, 1996 | DOI

[25] Robert D. Holt Population dynamics in two patch environments: some anomalous consequences of an optimal habitat distribution, Theor. Popul. Biol., Volume 28 (1985) no. 2, pp. 181-201 | DOI | Zbl

[26] Simon A. Levin Dispersion and population interactions, Am. Natur., Volume 108 (1974) no. 960, pp. 207-228 | DOI

[27] Simon A. Levin Spatial patterning and the structure of ecological communities, Some Mathematical Questions in Biology VII (Lectures on Mathematics in the Life Sciences), Volume 8, American Mathematical Society, 1976 | Zbl

[28] Claude Lobry; Tewfik Sari; Sefiane Touhami On Tykhonov’s theorem for convergence of solutions of slow and fast systems, Electron. J. Differ. Equ., Volume 1998 (1998), 19, 22 pages | Zbl

[29] Alfred J. Lotka Elements of Mathematical Biology, Dover Publications, 1956

[30] Zhengyi Lu; Yasuhiro Takeuchi Global asymptotic behavior in single-species discrete diffusion systems, J. Math. Biol., Volume 32 (1993), pp. 67-77 | DOI | Zbl

[31] Hamish McCallum Population Parameters: Estimation for Ecological Models, Blackwell Science, 2000 | DOI

[32] Yurii Nesterov; Vladimir Yu. Protasov Computing closest stable nonnegative matrix, SIAM J. Matrix Anal. Appl., Volume 41 (2020) no. 1, pp. 1-28 | DOI | Zbl

[33] F. J. Richards A Flexible Growth Function for Empirical Use, J. Exp. Bot., Volume 10 (1959) no. 29, pp. 290-300 | DOI

[34] Hal L. Smith; Paul Waltman The theory of the chemostat. Dynamics of microbial competition, Cambridge Studies in Mathematical Biology, 13, Cambridge University Press, 1995

[35] Yasuhiro Takeuchi Cooperative systems theory and global stability of diffusion models, Acta Appl. Math., Volume 14 (1989) no. 1-2, pp. 49-57 | DOI

[36] A. N. Tikhonov Systems of differential equations containing small parameters in the derivatives, Mat. Sb., Volume 31 (1952) no. 3, pp. 575-586

[37] A. Tsoularis; J. Wallace Analysis of Logistic Growth Models, Math. Biosci., Volume 179 (2002) no. 1, pp. 21-55 | DOI | Zbl

[38] Malcolm E. Turner; Edwin L. Bradley; Katherine A. Kirk; Kenneth M. Pruitt A Theory of Growth, Math. Biosci., Volume 29 (1976), pp. 367-373 | DOI

[39] Pierre François Verhulst Notice sur la loi que la population suit dans son accroissement, Corr. Math. Physics, Volume 10 (1838) no. 113 | DOI

[40] Wolfgang R. Wasow Asymptotic Expansions for Ordinary Differential Equations, Robert E. Krieger Publishing Company, 1976

[41] Hong Wu; Yuanshi Wang; Yufeng Li; Donald L. DeAngelis Dispersal asymmetry in a two-patch system with source-sink populations, Theor. Popul. Biol., Volume 131 (2020), pp. 54-65 | DOI | Zbl

[42] Bo Zhang; Xin Liu; Donald L. DeAngelis; Wei-Ming Ni; G. Geoff Wang Effects of dispersal on total biomass in a patchy, heterogeneous system: analysis and experiment, Math. Biosci., Volume 264 (2015), pp. 54-62 | DOI | Zbl

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Contribution à la théorie logistique de la croissance : structure temporelle et potentiel de croissance

Roger Buis

C. R. Biol (2003)


Sur la notion de limite interne et externe dans les fonctions de croissance monotones. Une reformulation de l'équation logistique

Roger Buis; Jacqueline Lück

C. R. Biol (2006)


Modelling individual plant growth at a variable mean density or at a specific spatial setting

Christian Damgaard

C. R. Biol (2004)