In this paper, we consider a general single species model in a heterogeneous environment of
Révisé le :
Accepté le :
Publié le :
Bilel Elbetch 1

@article{CRMATH_2023__361_G5_911_0, author = {Bilel Elbetch}, title = {Generalized logistic equation on {Networks}}, journal = {Comptes Rendus. Math\'ematique}, pages = {911--934}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, year = {2023}, doi = {10.5802/crmath.460}, language = {en}, }
Bilel Elbetch. Generalized logistic equation on Networks. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 911-934. doi : 10.5802/crmath.460. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.460/
[1] In dispersal always beneficial to carrying capacity? New insights from the multi-patch logistic equation, Theor. Popul. Biol., Volume 106 (2015), pp. 45-59 | DOI | Zbl
[2] Asymmetric dispersal in the multi-patch logistic equation, Theor. Popul. Biol., Volume 120 (2018), pp. 11-15 | DOI | Zbl
[3] Diseases in metapopulations, Modeling and Dynamics of Infectious Diseases (Zhien Ma; Yicang Zhou; Jianhong Wu, eds.) (Series in Contemporary Applied Mathematics), Volume 11, World Scientific, 2009, pp. 64-122 | DOI
[4] Number of Source Patches Required for Population Persistence in a Source-Sink Metapopulation with Explicit Movement, Bull. Math. Biol., Volume 81 (2019), pp. 1916-1942 | DOI | Zbl
[5] A quantitative theory of organic growth, Hum. Biol., Volume 10 (1938) no. 2, pp. 181-213 | DOI
[6] Logistic Growth Rate Functions, J. Theor. Biol., Volume 21 (1968) no. 1, pp. 42-44 | DOI
[7] The effects of human movement on the persistence of vector-borne diseases, J. Theor. Biol., Volume 258 (2009), pp. 550-560 | DOI
[8] Stabilizing the Metzler matrices with applications to dynamical systems, Calcolo, Volume 57 (2020) no. 1 | DOI | Zbl
[9] Effects of diffusion on total biomass in heterogeneous continuous and discrete-patch systems, Theor. Ecol., Volume 9 (2016), pp. 443-453 | DOI
[10] Persistence and stability of seed-dispersel species in a patchy environment, Theor. Popul. Biol., Volume 16 (1979) no. 2, pp. 107-125 | DOI | Zbl
[11] Effects of dispersal in a non-uniform environment on population dynamics and competition: a patch model approach, Discrete Contin. Dyn. Syst., Volume 19 (2014) no. 10, pp. 3087-3104 | DOI | Zbl
[12] Effect of dispersal in Two-patch environment with Richards growth on population dynamics, J. Innov. Appl. Math. Comput. Sci., Volume 2 (2022) no. 3, pp. 41-68 | DOI
[13] Effects of rapid population growth on total biomass in Multi-patch environment (2022) (https://hal.science/hal-03698445)
[14] The multi-patch logistic equation, Discrete Contin. Dyn. Syst., Ser. B, Volume 26 (2021) no. 12, pp. 6405-6424 | DOI | Zbl
[15] The multi-patch logistic equation with asymmetric migration, Rev. Integr., Volume 40 (2022) no. 1, pp. 25-57 | DOI | Zbl
[16] Mathematical Models of Population Interactions with Dispersal II: Differential Survival in a Change of Habitat, J. Math. Anal. Appl., Volume 115 (1986), pp. 140-154 | DOI | Zbl
[17] Global stability and predator dynamics in a model of prey dispersal in a patchy environment, Nonlinear Anal., Theory Methods Appl., Volume 13 (1989) no. 8, pp. 993-1002 | DOI | Zbl
[18] Mathematical Models of Population Interactions with Dispersal I: Stabilty of two habitats with and without a predator, SIAM J. Appl. Math., Volume 32 (1977), pp. 631-648 | DOI | Zbl
[19] The Theory of Matrices, Volume 2, AMS Chelsea Publishing, 2000
[20] How does dispersal affect the infection size?, SIAM J. Appl. Math., Volume 80 (2020) no. 5, pp. 2144-2169 | DOI | Zbl
[21] Fast diffusion inhibits disease outbreaks, Proc. Am. Math. Soc., Volume 148 (2020) no. 4, pp. 1709-1722 | DOI | Zbl
[22] A multipatch malaria model with logistic growth, SIAM J. Appl. Math., Volume 72 (2012) no. 3, pp. 819-841 | DOI | Zbl
[23] Global stability of the endemic equilibrium of multigroup SIR epidemic models, Can. Appl. Math. Q., Volume 14 (2006), pp. 259-284 | Zbl
[24] Modelling Biological Systems: Principles and Applications, Chapman & Hall, 1996 | DOI
[25] Population dynamics in two patch environments: some anomalous consequences of an optimal habitat distribution, Theor. Popul. Biol., Volume 28 (1985) no. 2, pp. 181-201 | DOI | Zbl
[26] Dispersion and population interactions, Am. Natur., Volume 108 (1974) no. 960, pp. 207-228 | DOI
[27] Spatial patterning and the structure of ecological communities, Some Mathematical Questions in Biology VII (Lectures on Mathematics in the Life Sciences), Volume 8, American Mathematical Society, 1976 | Zbl
[28] On Tykhonov’s theorem for convergence of solutions of slow and fast systems, Electron. J. Differ. Equ., Volume 1998 (1998), 19, 22 pages | Zbl
[29] Elements of Mathematical Biology, Dover Publications, 1956
[30] Global asymptotic behavior in single-species discrete diffusion systems, J. Math. Biol., Volume 32 (1993), pp. 67-77 | DOI | Zbl
[31] Population Parameters: Estimation for Ecological Models, Blackwell Science, 2000 | DOI
[32] Computing closest stable nonnegative matrix, SIAM J. Matrix Anal. Appl., Volume 41 (2020) no. 1, pp. 1-28 | DOI | Zbl
[33] A Flexible Growth Function for Empirical Use, J. Exp. Bot., Volume 10 (1959) no. 29, pp. 290-300 | DOI
[34] The theory of the chemostat. Dynamics of microbial competition, Cambridge Studies in Mathematical Biology, 13, Cambridge University Press, 1995
[35] Cooperative systems theory and global stability of diffusion models, Acta Appl. Math., Volume 14 (1989) no. 1-2, pp. 49-57 | DOI
[36] Systems of differential equations containing small parameters in the derivatives, Mat. Sb., Volume 31 (1952) no. 3, pp. 575-586
[37] Analysis of Logistic Growth Models, Math. Biosci., Volume 179 (2002) no. 1, pp. 21-55 | DOI | Zbl
[38] A Theory of Growth, Math. Biosci., Volume 29 (1976), pp. 367-373 | DOI
[39] Notice sur la loi que la population suit dans son accroissement, Corr. Math. Physics, Volume 10 (1838) no. 113 | DOI
[40] Asymptotic Expansions for Ordinary Differential Equations, Robert E. Krieger Publishing Company, 1976
[41] Dispersal asymmetry in a two-patch system with source-sink populations, Theor. Popul. Biol., Volume 131 (2020), pp. 54-65 | DOI | Zbl
[42] Effects of dispersal on total biomass in a patchy, heterogeneous system: analysis and experiment, Math. Biosci., Volume 264 (2015), pp. 54-62 | DOI | Zbl
Cité par Sources :
Commentaires - Politique