Comptes Rendus
Équations aux dérivées partielles, Théorie du contrôle
Analysis of non scalar control problems for parabolic systems by the block moment method
[Analyse de problèmes de contrôle non scalaires pour des systèmes paraboliques par la méthode des moments par blocs]
Comptes Rendus. Mathématique, Volume 361 (2023), pp. 1191-1248.

On étudie dans cet article des systèmes de contrôle paraboliques autonomes linéaires abstraits. Dans [9], avec A. Benabdallah, nous avons introduit la méthode des moments par blocs dans le cas d’un opérateur de contrôle scalaire. Le but principal de cette méthode est de permettre de calculer le temps minimal nécessaire pour amener à zéro une donnée initiale fixée (ou un espace de données initiales), en particulier dans le cas où des phénomènes de condensation spectrale sont présents. Le but du présent travail est d’approfondir cette analyse pour prendre en compte n’importe quel opérateur de contrôle admissible. Le cadre proposé permet des applications à des équations ou systèmes paraboliques couplés en dimension un d’espace.

Pour de tels opérateurs de contrôle admissibles, la caractérisation du temps minimal de contrôle est obtenu à l’aide de la résolution de problèmes de moment vectoriels auxiliaires suivie d’une procédure d’optimisation sous contrainte du coût de cette résolution. Cela amène à des estimations essentiellement optimales pour la résolution de ces problèmes de moment par bloc qui, de surcroît, sont uniformes par rapport au spectre de l’opérateur d’évolution à l’intérieur d’une certaine classe. Ce caractère uniforme permet de prouver la contrôlabilité uniforme de divers systèmes dépendant de paramètres. Nous déduisons également des estimations du coût de contrôlabilité quand le temps de contrôle est proche du temps minimal.

Nous illustrons le fonctionnement de cette méthode sur quelques exemples de tels systèmes abstraits mais également sur des exemples plus concrets de systèmes d’équations aux dérivées partielles paraboliques contrôlés en dimension 1. Notre stratégie permet d’étudier des propriétés de contrôlabilité qui semblent hors de portée par les méthodes existantes de la littérature.

This article deals with abstract linear time invariant controlled systems of parabolic type. In [9], with A. Benabdallah, we introduced the block moment method for scalar control operators. The principal aim of this method is to compute the minimal time needed to drive an initial condition (or a space of initial conditions) to zero, in particular in the case when spectral condensation occurs. The purpose of the present article is to push forward the analysis to deal with any admissible control operator. The considered setting leads to applications to one dimensional parabolic-type equations or coupled systems of such equations.

With such admissible control operator, the characterization of the minimal null control time is obtained thanks to the resolution of an auxiliary vectorial block moment problem (i.e. set in the control space) followed by a constrained optimization procedure of the cost of this resolution. This leads to essentially sharp estimates on the resolution of the block moment problems which are uniform with respect to the spectrum of the evolution operator in a certain class. This uniformity allows the study of uniform controllability for various parameter dependent problems. We also deduce estimates on the cost of controllability when the final time goes to the minimal null control time.

We illustrate how the method works on a few examples of such abstract controlled systems and then we deal with actual coupled systems of one dimensional parabolic partial differential equations. Our strategy enables us to tackle controllability issues that seem out of reach by existing techniques.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.487
Classification : 93B05, 93C20, 93C25, 30E05, 35K90, 35P10

Franck Boyer 1 ; Morgan Morancey 2

1 Institut de Mathématiques de Toulouse & Institut Universitaire de France, UMR 5219, Université de Toulouse, CNRS, UPS IMT, F-31062 Toulouse Cedex 9, France.
2 Aix-Marseille Université, CNRS, Centrale Marseille, I2M, UMR 7373, 13453 Marseille, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2023__361_G8_1191_0,
     author = {Franck Boyer and Morgan Morancey},
     title = {Analysis of non scalar control problems for parabolic systems by the block moment method},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1191--1248},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     year = {2023},
     doi = {10.5802/crmath.487},
     language = {en},
}
TY  - JOUR
AU  - Franck Boyer
AU  - Morgan Morancey
TI  - Analysis of non scalar control problems for parabolic systems by the block moment method
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 1191
EP  - 1248
VL  - 361
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.487
LA  - en
ID  - CRMATH_2023__361_G8_1191_0
ER  - 
%0 Journal Article
%A Franck Boyer
%A Morgan Morancey
%T Analysis of non scalar control problems for parabolic systems by the block moment method
%J Comptes Rendus. Mathématique
%D 2023
%P 1191-1248
%V 361
%I Académie des sciences, Paris
%R 10.5802/crmath.487
%G en
%F CRMATH_2023__361_G8_1191_0
Franck Boyer; Morgan Morancey. Analysis of non scalar control problems for parabolic systems by the block moment method. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 1191-1248. doi : 10.5802/crmath.487. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.487/

[1] Damien Allonsius; Franck Boyer Boundary null-controllability of semi-discrete coupled parabolic systems in some multi-dimensional geometries, Math. Control Relat. Fields, Volume 10 (2020) no. 2, pp. 217-256 | DOI | MR | Zbl

[2] Damien Allonsius; Franck Boyer; Morgan Morancey Spectral analysis of discrete elliptic operators and applications in control theory, Numer. Math., Volume 140 (2018) no. 4, pp. 857-911 | DOI | MR | Zbl

[3] Damien Allonsius; Franck Boyer; Morgan Morancey Analysis of the null controllability of degenerate parabolic systems of Grushin type via the moments method, J. Evol. Equ., Volume 21 (2021) no. 4, pp. 4799-4843 | DOI | MR | Zbl

[4] Farid Ammar-Khodja; Assia Benabdallah; Manuel González-Burgos; Luz de Teresa Recent results on the controllability of linear coupled parabolic problems: A survey, Math. Control Relat. Fields, Volume 1 (2011) no. 3, pp. 267-306 | DOI | MR | Zbl

[5] Farid Ammar-Khodja; Assia Benabdallah; Manuel González-Burgos; Luz de Teresa Minimal time for the null controllability of parabolic systems: The effect of the condensation index of complex sequences, J. Funct. Anal., Volume 267 (2014) no. 7, pp. 2077-2151 | DOI | MR | Zbl

[6] Farid Ammar-Khodja; Assia Benabdallah; Manuel González-Burgos; Luz de Teresa New phenomena for the null controllability of parabolic systems: minimal time and geometrical dependence, J. Math. Anal. Appl., Volume 444 (2016) no. 2, pp. 1071-1113 | DOI | MR | Zbl

[7] Karine Beauchard; Frédéric Marbach Unexpected quadratic behaviors for the small-time local null controllability of scalar-input parabolic equations, J. Math. Pures Appl., Volume 136 (2020), pp. 22-91 | DOI | MR | Zbl

[8] Assia Benabdallah; Franck Boyer; Manuel González-Burgos; Guillaume Olive Sharp Estimates of the One-Dimensional Boundary Control Cost for Parabolic Systems and Application to the N-Dimensional Boundary Null Controllability in Cylindrical Domains, SIAM J. Control Optim., Volume 52 (2014) no. 5, pp. 2970-3001 | DOI | MR | Zbl

[9] Assia Benabdallah; Franck Boyer; Morgan Morancey A block moment method to handle spectral condensation phenomenon in parabolic control problems, Ann. Henri Lebesgue, Volume 3 (2020), pp. 717-793 | DOI | Numdam | MR | Zbl

[10] Assia Benabdallah; Yves Dermenjian; Jérôme Le Rousseau On the controllability of linear parabolic equations with an arbitrary control location for stratified media, C. R. Math. Acad. Sci. Paris, Volume 344 (2007) no. 6, pp. 357-362 | DOI | Numdam | MR | Zbl

[11] Kuntal Bhandari; Franck Boyer Boundary null-controllability of coupled parabolic systems with Robin conditions, Evol. Equ. Control Theory, Volume 10 (2021) no. 1, pp. 61-102 | DOI | MR | Zbl

[12] Franck Boyer Controllability of linear parabolic equations and systems, 2023 (lecture notes, https://hal.archives-ouvertes.fr/hal-02470625v4)

[13] Franck Boyer; Morgan Morancey Distributed null-controllability of some 1D cascade parabolic systems (2023) (in preparation) | HAL

[14] Franck Boyer; Guillaume Olive Boundary null-controllability of some multi-dimensional linear parabolic systems by the moment method (to appear in Ann. Inst. Fourier) | HAL

[15] Franck Boyer; Guillaume Olive Approximate controllability conditions for some linear 1D parabolic systems with space-dependent coefficients, Math. Control Relat. Fields, Volume 4 (2014) no. 3, pp. 263-287 | DOI | MR | Zbl

[16] Piermarco Cannarsa; Alessandro Duca; Cristina Urbani Exact controllability to eigensolutions of the bilinear heat equation on compact networks, Discrete Contin. Dyn. Syst., Ser. S, Volume 15 (2022) no. 6, pp. 1377-1401 | DOI | MR | Zbl

[17] Piermarco Cannarsa; Patrick Martinez; Judith Vancostenoble The cost of controlling weakly degenerate parabolic equations by boundary controls, Math. Control Relat. Fields, Volume 7 (2017) no. 2, pp. 171-211 | DOI | MR | Zbl

[18] Piermarco Cannarsa; Patrick Martinez; Judith Vancostenoble The cost of controlling strongly degenerate parabolic equations, ESAIM, Control Optim. Calc. Var., Volume 26 (2020), 2, 50 pages | DOI | MR

[19] Piermarco Cannarsa; Patrick Martinez; Judith Vancostenoble Precise estimates for biorthogonal families under asymptotic gap conditions, Discrete Contin. Dyn. Syst., Ser. S, Volume 13 (2020) no. 5, pp. 1441-1472 | DOI | MR | Zbl

[20] Hector O. Fattorini Some remarks on complete controllability, SIAM J. Control, Volume 4 (1966), pp. 686-694 | DOI | MR | Zbl

[21] Hector O. Fattorini; David L. Russell Exact controllability theorems for linear parabolic equations in one space dimension, Arch. Ration. Mech. Anal., Volume 43 (1971), pp. 272-292 | DOI | MR | Zbl

[22] Hector O. Fattorini; David L. Russell Uniform bounds on biorthogonal functions for real exponentials with an application to the control theory of parabolic equations, Q. Appl. Math., Volume 32 (1974/75), pp. 45-69 | DOI | MR | Zbl

[23] Manuel González-Burgos; Lydia Ouaili Sharp estimates for biorthogonal families to exponential functions associated to complex sequences without gap conditions, Evol. Equ. Control Theory (2023) (early access) | DOI

[24] Manuel González-Burgos; Luz de Teresa Controllability results for cascade systems of m coupled parabolic PDEs by one control force, Port. Math., Volume 67 (2010) no. 1, pp. 91-113 | DOI | MR | Zbl

[25] John Lagnese Control of wave processes with distributed controls supported on a subregion, SIAM J. Control Optim., Volume 21 (1983) no. 1, pp. 68-85 | DOI | MR | Zbl

[26] Camille Laurent; Matthieu Léautaud On uniform controllability of 1D transport equations in the vanishing viscosity limit, C. R. Math. Acad. Sci. Paris, Volume 361 (2023), pp. 265-312 | DOI | MR | Zbl

[27] Jérôme Le Rousseau; Gilles Lebeau On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations, ESAIM, Control Optim. Calc. Var., Volume 18 (2012) no. 3, pp. 712-747 | DOI | Numdam | MR | Zbl

[28] Gilles Lebeau; Luc Robbiano Contrôle exact de l’équation de la chaleur, Commun. Partial Differ. Equations, Volume 20 (1995) no. 1-2, pp. 335-356 | DOI | MR

[29] Pierre Lissy The cost of the control in the case of a minimal time of control: the example of the one-dimensional heat equation, J. Math. Anal. Appl., Volume 451 (2017) no. 1, pp. 497-507 | DOI | MR

[30] Yuning Liu; Takéo Takahashi; Marius Tucsnak Single input controllability of a simplified fluid-structure interaction model, ESAIM, Control Optim. Calc. Var., Volume 19 (2013) no. 1, pp. 20-42 | DOI | Numdam | MR | Zbl

[31] Jérôme Lohéac; Emmanuel Trélat; Enrique Zuazua Minimal controllability time for the heat equation under unilateral state or control constraints, Math. Models Methods Appl. Sci., Volume 27 (2017) no. 9, pp. 1587-1644 | DOI | MR | Zbl

[32] Antonio López; Enrique Zuazua Uniform null-controllability for the one-dimensional heat equation with rapidly oscillating periodic density, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 19 (2002) no. 5, pp. 543-580 | DOI | Numdam | MR

[33] Luc Miller A direct Lebeau-Robbiano strategy for the observability of heat-like semigroups, Discrete Contin. Dyn. Syst., Ser. B, Volume 14 (2010) no. 4, pp. 1465-1485 | DOI | MR | Zbl

[34] Guillaume Olive Boundary approximate controllability of some linear parabolic systems, Evol. Equ. Control Theory, Volume 3 (2014) no. 1, pp. 167-189 | DOI | MR | Zbl

[35] Lydia Ouaili Contrôlabilité de quelques systèmes paraboliques, Ph. D. Thesis, Aix-Marseille Université (2020) (https://www.theses.fr/2020AIXM0133)

[36] Laurent Schwartz Étude des sommes d’exponentielles réelles, Actualités Scientifiques et Industrielles, 959, Hermann, 1943, 89 pages | MR

[37] Thomas I. Seidman Two results on exact boundary control of parabolic equations, Appl. Math. Optim., Volume 11 (1984) no. 2, pp. 145-152 | DOI | MR | Zbl

[38] Marius Tucsnak; George Weiss Observation and control for operator semigroups, Birkhäuser Advanced Texts. Basler Lehrbücher, Birkhäuser, 2009, xii+483 pages | DOI | MR

Cité par Sources :

Commentaires - Politique