We study polynomials with complex coefficients which are nondegenerate in two senses, one of Kouchnirenko and the other with respect to its Newton polyhedron, through data on contact loci and motivic nearby cycles. Introducing an explicit description of these quantities we can answer in part the question concerning the motivic nearby cycles of restriction functions in the context of Newton nondegenerate polynomials. Furthermore, in the nondegeneracy in the sense of Kouchnirenko, we give calculations on cohomology groups of the contact loci.
Revised:
Accepted:
Published online:
Keywords: arc spaces, contact loci, motivic zeta function, motivic Milnor fiber, motivic nearby cycles, Newton polyhedron, nondegeneracy, sheaf cohomology with compact support
Quy Thuong Lê 1, 2; Tat Thang Nguyen 3
@article{CRMATH_2023__361_G8_1249_0, author = {Quy Thuong L\^e and Tat Thang Nguyen}, title = {Geometry of nondegenerate polynomials: {Motivic} nearby cycles and {Cohomology} of contact loci}, journal = {Comptes Rendus. Math\'ematique}, pages = {1249--1266}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, year = {2023}, doi = {10.5802/crmath.492}, language = {en}, }
TY - JOUR AU - Quy Thuong Lê AU - Tat Thang Nguyen TI - Geometry of nondegenerate polynomials: Motivic nearby cycles and Cohomology of contact loci JO - Comptes Rendus. Mathématique PY - 2023 SP - 1249 EP - 1266 VL - 361 PB - Académie des sciences, Paris DO - 10.5802/crmath.492 LA - en ID - CRMATH_2023__361_G8_1249_0 ER -
%0 Journal Article %A Quy Thuong Lê %A Tat Thang Nguyen %T Geometry of nondegenerate polynomials: Motivic nearby cycles and Cohomology of contact loci %J Comptes Rendus. Mathématique %D 2023 %P 1249-1266 %V 361 %I Académie des sciences, Paris %R 10.5802/crmath.492 %G en %F CRMATH_2023__361_G8_1249_0
Quy Thuong Lê; Tat Thang Nguyen. Geometry of nondegenerate polynomials: Motivic nearby cycles and Cohomology of contact loci. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 1249-1266. doi : 10.5802/crmath.492. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.492/
[1] Quasi-ordinary power series and their zeta functions, Memoirs of the American Mathematical Society, 84, American Mathematical Society, 2005, vi+85 pages | Zbl
[2] Cohomology of contact loci, J. Differ. Geom., Volume 120 (2022) no. 3, pp. 389-409 | MR | Zbl
[3] Computing motivic zeta functions on log smooth models, Math. Z., Volume 295 (2020) no. 1-2, pp. 427-462 | DOI | MR | Zbl
[4] Newton polyhedra and Igusa’s local zeta function, J. Number Theory, Volume 89 (2001) no. 1, pp. 31-64 | DOI | MR | Zbl
[5] Motivic Igusa zeta functions, J. Algebr. Geom., Volume 7 (1998) no. 3, pp. 505-537 | MR | Zbl
[6] Espaces d’arcs et invariants d’Alexander, Comment. Math. Helv., Volume 77 (2002) no. 4, pp. 783-820 | DOI | MR | Zbl
[7] Nearby cycles and composition with a nondegenerate polynomial, Int. Math. Res. Not., Volume 2005 (2005) no. 31, pp. 1873-1888 | DOI | MR | Zbl
[8] Iterated vanishing cycles, convolution, and a motivic analogue of a conjecture of Steenbrink, Duke Math. J., Volume 132 (2006) no. 3, pp. 409-457 | MR | Zbl
[9] La monodromie n’a pas de points fixes, J. Fac. Sci., Univ. Tokyo, Sect. I A, Volume 22 (1975) no. 3, pp. 409-427 | MR | Zbl
[10] Some remarks on relative monodromy, Real and complex singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976), Sijthoff & Noordhoff International Publishers, 1977, pp. 397-403 | Zbl
[11] Floer cohomology, multiplicity, and the log canonical threshold, Geom. Topol., Volume 23 (2019) no. 2, pp. 957-1056 | DOI | MR | Zbl
[12] A tropical motivic Fubini theorem with applications to Donaldson-Thomas theory, Duke Math. J., Volume 168 (2019) no. 10, pp. 1843-1886 | MR | Zbl
[13] Singularités à l’infini et intégration motivique, Bull. Soc. Math. Fr., Volume 140 (2012) no. 1, pp. 51-100 | DOI | Numdam | MR | Zbl
[14] Motivic Milnor fibre for nondegenerate function germs on toric singularities, Bridging algebra, geometry, and topology (Springer Proceedings in Mathematics & Statistics), Volume 96, Springer, 2014, pp. 255-267 | MR | Zbl
Cited by Sources:
Comments - Policy