Comptes Rendus
Algebraic geometry, Geometry and Topology
Geometry of nondegenerate polynomials: Motivic nearby cycles and Cohomology of contact loci
Comptes Rendus. Mathématique, Volume 361 (2023), pp. 1249-1266.

We study polynomials with complex coefficients which are nondegenerate in two senses, one of Kouchnirenko and the other with respect to its Newton polyhedron, through data on contact loci and motivic nearby cycles. Introducing an explicit description of these quantities we can answer in part the question concerning the motivic nearby cycles of restriction functions in the context of Newton nondegenerate polynomials. Furthermore, in the nondegeneracy in the sense of Kouchnirenko, we give calculations on cohomology groups of the contact loci.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.492
Classification: 14B05, 14B07, 14J17, 32S05, 32S30, 32S55
Keywords: arc spaces, contact loci, motivic zeta function, motivic Milnor fiber, motivic nearby cycles, Newton polyhedron, nondegeneracy, sheaf cohomology with compact support

Quy Thuong Lê 1, 2; Tat Thang Nguyen 3

1 University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai Street, Thanh Xuan District, Hanoi, Vietnam
2 Department of Mathematics, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
3 Institute of Mathematics, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi, Vietnam
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMATH_2023__361_G8_1249_0,
     author = {Quy Thuong L\^e and Tat Thang Nguyen},
     title = {Geometry of nondegenerate polynomials: {Motivic} nearby cycles and {Cohomology} of contact loci},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1249--1266},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     year = {2023},
     doi = {10.5802/crmath.492},
     language = {en},
}
TY  - JOUR
AU  - Quy Thuong Lê
AU  - Tat Thang Nguyen
TI  - Geometry of nondegenerate polynomials: Motivic nearby cycles and Cohomology of contact loci
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 1249
EP  - 1266
VL  - 361
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.492
LA  - en
ID  - CRMATH_2023__361_G8_1249_0
ER  - 
%0 Journal Article
%A Quy Thuong Lê
%A Tat Thang Nguyen
%T Geometry of nondegenerate polynomials: Motivic nearby cycles and Cohomology of contact loci
%J Comptes Rendus. Mathématique
%D 2023
%P 1249-1266
%V 361
%I Académie des sciences, Paris
%R 10.5802/crmath.492
%G en
%F CRMATH_2023__361_G8_1249_0
Quy Thuong Lê; Tat Thang Nguyen. Geometry of nondegenerate polynomials: Motivic nearby cycles and Cohomology of contact loci. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 1249-1266. doi : 10.5802/crmath.492. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.492/

[1] Enrique Artal Bartolo; Pierrette Cassou-Noguès; Ignacio Luengo; Alejandro Melle Hernández Quasi-ordinary power series and their zeta functions, Memoirs of the American Mathematical Society, 84, American Mathematical Society, 2005, vi+85 pages | Zbl

[2] Nero Budur; Javier Fernández de Bobadilla; Quy Thuong Lê; Hong Duc Nguyen Cohomology of contact loci, J. Differ. Geom., Volume 120 (2022) no. 3, pp. 389-409 | MR | Zbl

[3] Emmanuel Bultot; Johannes Nicaise Computing motivic zeta functions on log smooth models, Math. Z., Volume 295 (2020) no. 1-2, pp. 427-462 | DOI | MR | Zbl

[4] Jan Denef; Kathleen Hoornaert Newton polyhedra and Igusa’s local zeta function, J. Number Theory, Volume 89 (2001) no. 1, pp. 31-64 | DOI | MR | Zbl

[5] Jan Denef; François Loeser Motivic Igusa zeta functions, J. Algebr. Geom., Volume 7 (1998) no. 3, pp. 505-537 | MR | Zbl

[6] Gil Guibert Espaces d’arcs et invariants d’Alexander, Comment. Math. Helv., Volume 77 (2002) no. 4, pp. 783-820 | DOI | MR | Zbl

[7] Gil Guibert; François Loeser; Michel Merle Nearby cycles and composition with a nondegenerate polynomial, Int. Math. Res. Not., Volume 2005 (2005) no. 31, pp. 1873-1888 | DOI | MR | Zbl

[8] Gil Guibert; François Loeser; Michel Merle Iterated vanishing cycles, convolution, and a motivic analogue of a conjecture of Steenbrink, Duke Math. J., Volume 132 (2006) no. 3, pp. 409-457 | MR | Zbl

[9] Lê Dũng Tráng La monodromie n’a pas de points fixes, J. Fac. Sci., Univ. Tokyo, Sect. I A, Volume 22 (1975) no. 3, pp. 409-427 | MR | Zbl

[10] Lê Dũng Tráng Some remarks on relative monodromy, Real and complex singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976), Sijthoff & Noordhoff International Publishers, 1977, pp. 397-403 | Zbl

[11] Mark McLean Floer cohomology, multiplicity, and the log canonical threshold, Geom. Topol., Volume 23 (2019) no. 2, pp. 957-1056 | DOI | MR | Zbl

[12] Johannes Nicaise; Sam Payne A tropical motivic Fubini theorem with applications to Donaldson-Thomas theory, Duke Math. J., Volume 168 (2019) no. 10, pp. 1843-1886 | MR | Zbl

[13] Michel Raibaut Singularités à l’infini et intégration motivique, Bull. Soc. Math. Fr., Volume 140 (2012) no. 1, pp. 51-100 | DOI | Numdam | MR | Zbl

[14] Joseph H. M. Steenbrink Motivic Milnor fibre for nondegenerate function germs on toric singularities, Bridging algebra, geometry, and topology (Springer Proceedings in Mathematics & Statistics), Volume 96, Springer, 2014, pp. 255-267 | MR | Zbl

Cited by Sources:

Comments - Policy