We prove that for any element in the completion of the space of smooth compact exact Lagrangian submanifolds of a cotangent bundle equipped with the spectral distance, the -support of coincides with the reduced micro-support of its sheaf quantization. As an application, we give a characterization of the Vichery subdifferential in terms of -support.
Revised:
Accepted:
Published online:
Tomohiro Asano 1; Stéphane Guillermou 2; Vincent Humilière 3; Yuichi Ike 4; Claude Viterbo 5
@article{CRMATH_2023__361_G8_1333_0, author = {Tomohiro Asano and St\'ephane Guillermou and Vincent Humili\`ere and Yuichi Ike and Claude Viterbo}, title = {The $\gamma $-support as a micro-support}, journal = {Comptes Rendus. Math\'ematique}, pages = {1333--1340}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, year = {2023}, doi = {10.5802/crmath.499}, language = {en}, }
TY - JOUR AU - Tomohiro Asano AU - Stéphane Guillermou AU - Vincent Humilière AU - Yuichi Ike AU - Claude Viterbo TI - The $\gamma $-support as a micro-support JO - Comptes Rendus. Mathématique PY - 2023 SP - 1333 EP - 1340 VL - 361 PB - Académie des sciences, Paris DO - 10.5802/crmath.499 LA - en ID - CRMATH_2023__361_G8_1333_0 ER -
%0 Journal Article %A Tomohiro Asano %A Stéphane Guillermou %A Vincent Humilière %A Yuichi Ike %A Claude Viterbo %T The $\gamma $-support as a micro-support %J Comptes Rendus. Mathématique %D 2023 %P 1333-1340 %V 361 %I Académie des sciences, Paris %R 10.5802/crmath.499 %G en %F CRMATH_2023__361_G8_1333_0
Tomohiro Asano; Stéphane Guillermou; Vincent Humilière; Yuichi Ike; Claude Viterbo. The $\gamma $-support as a micro-support. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 1333-1340. doi : 10.5802/crmath.499. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.499/
[1] Higher-dimensional Birkhoff attractors (2023) (in preparation)
[2] Persistence-like distance on Tamarkin’s category and symplectic displacement energy, J. Symplectic Geom., Volume 18 (2020) no. 3, pp. 613-649 | DOI | MR | Zbl
[3] Completeness of derived interleaving distances and sheaf quantization of non-smooth objects (2022) | arXiv
[4] Exact Lagrangian submanifolds in simply-connected cotangent bundles, Invent. Math., Volume 172 (2008) no. 1, pp. 1-27 | DOI | MR | Zbl
[5] Quantization of conic Lagrangian submanifolds of cotangent bundles (2012) | arXiv
[6] Sheaves and symplectic geometry of cotangent bundles (2019) | arXiv
[7] Sheaf quantization of Hamiltonian isotopies and applications to non-displaceability problems, Duke Math. J., Volume 161 (2012) no. 2, pp. 201-245 | DOI | Zbl
[8] Microlocal theory of sheaves and Tamarkin’s non displaceability theorem, Homological mirror symmetry and tropical geometry (Lecture Notes of the Unione Matematica Italiana), Volume 15, Springer, 2014, pp. 43-85 | DOI | MR | Zbl
[9] The singular support of sheaves is -coisotropic (2022) | arXiv
[10] On some completions of the space of Hamiltonian maps., Bull. Soc. Math. Fr., Volume 136 (2008) no. 3, pp. 373-404 | DOI | Numdam | MR | Zbl
[11] Reduction of symplectic homeomorphisms, Ann. Sci. Éc. Norm. Supér., Volume 49 (2016) no. 3, pp. 633-668 | DOI | MR | Zbl
[12] Sheaves on manifolds, Grundlehren der Mathematischen Wissenschaften, 292, Springer, 1990 | DOI
[13] Partial quasimorphisms and quasistates on cotangent bundles, and symplectic homogenization, J. Mod. Dyn., Volume 6 (2012) no. 2, pp. 205-249 | DOI | MR | Zbl
[14] Symplectic topology as the geometry of action functional. I. Relative Floer theory on the cotangent bundle, J. Differ. Geom., Volume 46 (1997) no. 3, pp. 499-577 | MR | Zbl
[15] A lemma for microlocal sheaf theory in the -categorical setting, Publ. Res. Inst. Math. Sci., Volume 54 (2018) no. 2, pp. 379-391 | DOI | MR | Zbl
[16] Graded Lagrangian submanifolds, Bull. Soc. Math. Fr., Volume 128 (2000) no. 1, pp. 103-149 | DOI | Numdam | MR | Zbl
[17] Microlocal Condition for Non-displaceability, Algebraic and Analytic Microlocal Analysis (Michael Hitrik; Dmitry Tamarkin; Boris Tsygan; Steve Zelditch, eds.), Springer (2018), pp. 99-223 | DOI | Zbl
[18] Observations on the Hofer distance between closed subsets, Math. Res. Lett., Volume 22 (2015) no. 6, pp. 1805-1820 | DOI | MR | Zbl
[19] Homogénéisation symplectique et Applications de la théorie des faisceaux à la topologie symplectique, Ph. D. Thesis, École polytechnique (2012) https://tel.archives-ouvertes.fr/pastel-00780016/
[20] Homological differential calculus (2013) | arXiv
[21] Symplectic topology as the geometry of generating functions, Math. Ann., Volume 292 (1992) no. 4, pp. 685-710 | DOI | MR | Zbl
[22] Symplectic Homogenization (2008) | arXiv
[23] Sheaf Quantization of Lagrangians and Floer cohomology (2019) | arXiv
[24] On the supports in the Humilière completion and -coisotropic sets (with an Appendix joint with Vincent Humilière) (2022) | arXiv
Cited by Sources:
Comments - Policy