Comptes Rendus
Representation theory
The Rank-One property for free Frobenius extensions
Comptes Rendus. Mathématique, Volume 361 (2023), pp. 1341-1348.

A conjecture by the second author, proven by Bonnafé–Rouquier, says that the multiplicity matrix for baby Verma modules over the restricted rational Cherednik algebra has rank one over when restricted to each block of the algebra.

In this paper, we show that if H is a prime algebra that is a free Frobenius extension over a regular central subalgebra R, and the centre of H is normal Gorenstein, then each central quotient A of H by a maximal ideal 𝔪 of R satisfies the rank-one property with respect to the Cartan matrix of A. Examples where the result is applicable include graded Hecke algebras, extended affine Hecke algebras, quantized enveloping algebras at roots of unity, non-commutative crepant resolutions of Gorenstein domains and 3 and 4 dimensional PI Sklyanin algebras.

In particular, since the multiplicity matrix for restricted rational Cherednik algebras has the rank-one property if and only if its Cartan matrix does, our result provides a different proof of the original conjecture.

Une conjecture du deuxième auteur, qui a été prouvée par Bonnafé–Rouquier, dit que la matrice de multiplicité des bébé modules de Verma de l’algèbre rationnelle restreinte de Cherednik est de rang un sur lorsqu’elle est restreinte à chaque bloc de l’algèbre.

Dans cet article nous montrons que si H est une algèbre première qui est une extension libre de Frobenius sur une sous-algèbre centrale régulière R, et si le centre de H est Gorenstein normal, alors chaquequotient central A de H par un idéal maximal 𝔪 de R satisfait la propriété de rang un par rapport à la matrice de Cartan de A. Les exemples où le résultat est applicable incluent les algèbres de Hecke graduées, les algèbres de Hecke affines étendues, les algèbres enveloppantes quantifiées aux racines de l’unité, les résolutionscrépantes non commutatives des domaines de Gorenstein et les algèbres PI Sklyanin à dimension 3 et 4.

En particulier, puisque la matrice de multiplicité pour les algèbres de Cherednik rationnelles restreintes a la propriété de rang un si et seulement si sa matrice de Cartan l’a aussi, notre résultat fournit une preuve différente de la conjecture originale.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.502

Gwyn Bellamy 1; Ulrich Thiel 2

1 School of Mathematics and Statistics, University of Glasgow, University Place, Glasgow, G12 8QQ.
2 Department of Mathematics, University of Kaiserslautern, Postfach 3049, 67653 Kaiserslautern, Germany
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMATH_2023__361_G8_1341_0,
     author = {Gwyn Bellamy and Ulrich Thiel},
     title = {The {Rank-One} property for free {Frobenius} extensions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1341--1348},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     year = {2023},
     doi = {10.5802/crmath.502},
     language = {en},
}
TY  - JOUR
AU  - Gwyn Bellamy
AU  - Ulrich Thiel
TI  - The Rank-One property for free Frobenius extensions
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 1341
EP  - 1348
VL  - 361
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.502
LA  - en
ID  - CRMATH_2023__361_G8_1341_0
ER  - 
%0 Journal Article
%A Gwyn Bellamy
%A Ulrich Thiel
%T The Rank-One property for free Frobenius extensions
%J Comptes Rendus. Mathématique
%D 2023
%P 1341-1348
%V 361
%I Académie des sciences, Paris
%R 10.5802/crmath.502
%G en
%F CRMATH_2023__361_G8_1341_0
Gwyn Bellamy; Ulrich Thiel. The Rank-One property for free Frobenius extensions. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 1341-1348. doi : 10.5802/crmath.502. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.502/

[1] Gwyn Bellamy; Maurizio Martino On the smoothness of centres of rational Cherednik algebras in positive characteristic, Glasg. Math. J., Volume 55A (2013), pp. 27-54 | DOI | MR | Zbl

[2] Gwyn Bellamy; Ulrich Thiel Cores of graded algebras with triangular decomposition (2017) | arXiv

[3] Gwyn Bellamy; Ulrich Thiel Highest weight theory for finite-dimensional graded algebras with triangular decomposition, Adv. Math., Volume 330 (2018), pp. 361-419 | DOI | MR | Zbl

[4] Cédric Bonnafé; Raphaël Rouquier Cherednik algebras and Calogero–Moser cells (2022)

[5] Amiram Braun On symmetric, smooth and Calabi–Yau algebras, J. Algebra, Volume 317 (2007) no. 2, pp. 519-533 | DOI | MR | Zbl

[6] Amiram Braun The center of the enveloping algebra of the p-Lie algebras 𝔰𝔩 n , 𝔭𝔤𝔩 n , 𝔭𝔰𝔩 n , when p divides n, J. Algebra, Volume 504 (2018), pp. 217-290 | DOI | Zbl

[7] Kenneth A. Brown; Ken R. Goodearl Lectures on Algebraic Quantum Groups, Advanced Courses in Mathematics – CRM Barcelona, Birkhäuser, 2002 | DOI

[8] Kenneth A. Brown; Iain Gordon The ramification of centres: Lie algebras in positive characteristic and quantised enveloping algebras, Math. Z., Volume 238 (2001) no. 4, pp. 733-779 | DOI | MR | Zbl

[9] Kenneth A. Brown; Iain Gordon; Catharina H. Stroppel Cherednik, Hecke and quantum algebras as free Frobenius and Calabi–Yau extensions, J. Algebra, Volume 319 (2008) no. 3, pp. 1007-1034 | DOI | MR | Zbl

[10] Winfried Bruns; Jürgen Herzog Cohen–Macaulay rings, Cambridge Studies in Advanced Mathematics, 39, Cambridge University Press, 1993

[11] Corrado De Concini; Claudio Procesi Quantum groups, D-modules, representation theory, and quantum groups (Venice, 1992) (Lecture Notes in Mathematics), Volume 1565, Springer, 1992, pp. 31-140 | DOI | Zbl

[12] Pavel Etingof; Victor Ginzburg Symplectic reflection algebras, Calogero–Moser space, and deformed Harish–Chandra homomorphism, Invent. Math., Volume 147 (2002) no. 2, pp. 243-348 | DOI | MR | Zbl

[13] Iain Gordon Representations of semisimple Lie algebras in positive characteristic and quantum groups at roots of unity, Quantum groups and Lie theory (Durham, 1999) (London Mathematical Society Lecture Note Series), Volume 290, Cambridge University Press, 2001, pp. 149-167 | MR | Zbl

[14] Mikhail Khovanov; Aaron D. Lauda A diagrammatic approach to categorification of quantum groups II, Trans. Am. Math. Soc., Volume 363 (2011) no. 5, pp. 2685-2700 | DOI | MR | Zbl

[15] Tsit-Yuen Lam A first course in noncommutative rings, Graduate Texts in Mathematics, 131, Springer, 2001

[16] Stephane Launois; Lewis Topley Transfer results for Frobenius extensions, J. Algebra, Volume 524 (2019), pp. 35-58 | DOI | MR | Zbl

[17] Martin Lorenz Representations of finite-dimensional Hopf algebras, J. Algebra, Volume 188 (1997) no. 2, pp. 476-505 | DOI | MR | Zbl

[18] Martin Lorenz A tour of representation theory, Graduate Studies in Mathematics, 193, American Mathematical Society, 2018 | DOI | MR

[19] Martin Lorenz; Loretta Fitzgerald Tokoly Projective modules over Frobenius algebras and Hopf comodule algebras, Commun. Algebra, Volume 39 (2011) no. 12, pp. 4733-4750 | DOI | MR | Zbl

[20] John C. McConnell; J. Chris Robson Noncommutative Noetherian Rings, Graduate Studies in Mathematics, 30, American Mathematical Society, 2001 (with the cooperation of L. W. Small)

[21] Alexander Premet Irreducible representations of Lie algebras of reductive groups and the Kac–Weisfeiler conjecture, Invent. Math., Volume 121 (1995) no. 1, pp. 79-117 | DOI | MR | Zbl

[22] Raphaël Rouquier Quiver Hecke algebras and 2-Lie algebras, Algebra Colloq., Volume 19 (2012) no. 2, pp. 359-410 | DOI | MR | Zbl

[23] Ulrich Thiel Champ: a Cherednik algebra Magma package, LMS J. Comput. Math., Volume 18 (2015) no. 1, pp. 266-307 | DOI | MR | Zbl

Cited by Sources:

Comments - Policy