Comptes Rendus
Geometry and Topology
Surfaces of infinite-type are non-Hopfian
Comptes Rendus. Mathématique, Volume 361 (2023), pp. 1349-1356.

We show that finite-type surfaces are characterized by a topological analogue of the Hopf property. Namely, an oriented surface Σ is of finite-type if and only if every proper map f:ΣΣ of degree one is homotopic to a homeomorphism.

Nous montrons que les surfaces de type fini sont caractérisées par un analogue topologique de la propriété de Hopf. A savoir, une surface orientée Σ est de type fini si et seulement si toute application propre f:ΣΣ de degré un est homotope à un homéomorphisme.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.504
Classification: 57K20, 55S37

Sumanta Das 1; Siddhartha Gadgil 1

1 Department of Mathematics, Indian Institute of Science, Bangalore 560012, India
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMATH_2023__361_G8_1349_0,
     author = {Sumanta Das and Siddhartha Gadgil},
     title = {Surfaces of infinite-type are {non-Hopfian}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1349--1356},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     year = {2023},
     doi = {10.5802/crmath.504},
     language = {en},
}
TY  - JOUR
AU  - Sumanta Das
AU  - Siddhartha Gadgil
TI  - Surfaces of infinite-type are non-Hopfian
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 1349
EP  - 1356
VL  - 361
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.504
LA  - en
ID  - CRMATH_2023__361_G8_1349_0
ER  - 
%0 Journal Article
%A Sumanta Das
%A Siddhartha Gadgil
%T Surfaces of infinite-type are non-Hopfian
%J Comptes Rendus. Mathématique
%D 2023
%P 1349-1356
%V 361
%I Académie des sciences, Paris
%R 10.5802/crmath.504
%G en
%F CRMATH_2023__361_G8_1349_0
Sumanta Das; Siddhartha Gadgil. Surfaces of infinite-type are non-Hopfian. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 1349-1356. doi : 10.5802/crmath.504. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.504/

[1] David B. A. Epstein Curves on 2-manifolds and isotopies, Acta Math., Volume 115 (1966), pp. 83-107 | DOI | MR | Zbl

[2] David B. A. Epstein The degree of a map, Proc. Lond. Math. Soc., Volume 16 (1966), pp. 369-383 | DOI | MR | Zbl

[3] Federica Fanoni; Tyrone Ghaswala; Alan McLeay Homeomorphic subsurfaces and the omnipresent arcs, Ann. Henri Lebesgue, Volume 4 (2021), pp. 1565-1593 | DOI | Numdam | MR | Zbl

[4] John Hempel Residual finiteness of surface groups, Proc. Am. Math. Soc., Volume 32 (1972), p. 323 | DOI | MR | Zbl

[5] Edwin E. Moise Geometric topology in dimensions 2 and 3, Graduate Texts in Mathematics, 47, Springer, 1977, x+262 pages | DOI | MR

[6] Richard S. Palais When proper maps are closed, Proc. Am. Math. Soc., Volume 24 (1970), pp. 835-836 | MR | Zbl

[7] Ian Richards On the classification of noncompact surfaces, Trans. Am. Math. Soc., Volume 106 (1963), pp. 259-269 | DOI | MR | Zbl

Cited by Sources:

Comments - Policy