Nous montrons que les groupes de Lie Sp(n,1) vérifient la conjecture de Baum–Connes à coefficients arbitraires. L'outil essentiel de la preuve est la construction d'une famille de représentations uniformément bornées due à Cowling.
We show that the Lie groups Sp(n,1) satisfy the Baum–Connes conjecture with arbitrary coefficients. The main tool is the construction, due to Cowling, of a family of uniformly bounded representations.
@article{CRMATH_2002__334_7_533_0, author = {Pierre Julg}, title = {La conjecture de {Baum{\textendash}Connes} \`a coefficients pour le groupe {Sp(\protect\emph{n},1)}}, journal = {Comptes Rendus. Math\'ematique}, pages = {533--538}, publisher = {Elsevier}, volume = {334}, number = {7}, year = {2002}, doi = {10.1016/S1631-073X(02)02315-4}, language = {fr}, }
Pierre Julg. La conjecture de Baum–Connes à coefficients pour le groupe Sp(n,1). Comptes Rendus. Mathématique, Volume 334 (2002) no. 7, pp. 533-538. doi : 10.1016/S1631-073X(02)02315-4. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02315-4/
[1] F. Astengo, M. Cowling, B. Di Blasio, Preprint, 2001
[2] Classifying space for proper actions and K-theory of group
[3] Pseudodifferential operators on groups with dilatations, Duke Math. J., Volume 68 (1992), pp. 31-65
[4] Unitary and uniformly bounded representations of some simple Lie groups, Harmonic Analysis and Group Representations, Liguori, Naples, 1982, pp. 49-128
[5] E-theory and KK-theory for groups which act properly and isometrically on Hilbert space, Invent. Math., Volume 144 (2001) no. 1, pp. 23-74
[6] N. Higson, V. Lafforgue, Preprint, 1999
[7] Complexe de Rumin, suite spectrale de Forman et cohomologie L2 des espaces symétriques de rang 1, C. R. Acad. Sci. Paris, Série I, Volume 320 (1995) no. 4, pp. 451-456
[8] Remarks on the Baum–Connes conjecture and Kazhdan's property T, Fields Instit. Commun., 13, American Mathematical Society, 1997, pp. 145-153
[9] Travaux de Higson et Kasparov sur la conjecture de Baum–Connes, Séminaire Bourbaki, Exposé 841, Astérisque, 252, mars 1998, pp. 151-183
[10] Operator K-theory for the group SU(n,1), J. Reine Angew. Math., Volume 463 (1995), pp. 99-152
[11] Lorentz groupes: K-theory of unitary representations and crossed products, Soviet Math. Dokl., Volume 29 (1984) no. 2, pp. 256-260
[12] Equivariant KK-theory and the Novikov conjecture, Invent. Math., Volume 91 (1988) no. 1, pp. 147-201
[13] Une démonstration de la conjecture de Baum–Connes pour les groupes réductifs sur un corps p-adique et pour certains groupes discrets possédant la propriété (T), C. R. Acad. Sci. Paris, Série I, Volume 327 (1998) no. 5, pp. 439-444
[14] Differential geometry on C–C spaces and application to the Novikov–Shubin numbers of nilpotent Lie groups, C. R. Acad. Sci. Paris, Série I, Volume 329 (1999) no. 11, pp. 985-990
[15] Une démonstration de la conjecture de Connes–Kasparov pour les groupes de Lie linéaires connexes réductifs, C. R. Acad. Sci. Paris, Série I, Volume 304 (1987) no. 18, pp. 559-562
- The Baum-Connes conjecture: an extended survey, Advances in noncommutative geometry. Based on the noncommutative geometry conference, Shanghai, China, March 23 – April 7, 2017. On the occasion of Alain Connes' 70th Birthday, Cham: Springer, 2019, pp. 127-244 | DOI:10.1007/978-3-030-29597-4_3 | Zbl:1447.58006
- Foliation
-algebras on multiply fibred manifolds, Journal of Functional Analysis, Volume 265 (2013) no. 9, pp. 1829-1839 | DOI:10.1016/j.jfa.2013.07.009 | Zbl:1286.46078 - The Bernstein-Gelfand-Gelfand complex and Kasparov theory for
, Advances in Mathematics, Volume 226 (2011) no. 2, pp. 1474-1512 | DOI:10.1016/j.aim.2010.08.008 | Zbl:1215.19003 - The Baum-Connes conjecture for
-theory, Journal of -Theory, Volume 8 (2011) no. 1, pp. 3-29 | DOI:10.1017/is010003012jkt114 | Zbl:1243.19004 - K-Theory for Group C∗-algebras, Topics in Algebraic and Topological K-Theory, Volume 2008 (2011), p. 1 | DOI:10.1007/978-3-642-15708-0_1
- Products of longitudinal pseudodifferential operators on flag varieties, Journal of Functional Analysis, Volume 258 (2010) no. 4, pp. 1140-1166 | DOI:10.1016/j.jfa.2009.10.007 | Zbl:1183.43004
- Applications of Representation Theory to Harmonic Analysis of Lie Groups (and Vice Versa), Representation Theory and Complex Analysis, Volume 1931 (2008), p. 1 | DOI:10.1007/978-3-540-76892-0_1
- Euler characteristics and Gysin sequences for group actions on boundaries, Mathematische Annalen, Volume 334 (2006) no. 4, pp. 853-904 | DOI:10.1007/s00208-005-0747-y | Zbl:1092.19003
- The Baum–Connes conjecture via localisation of categories, Topology, Volume 45 (2006) no. 2, p. 209 | DOI:10.1016/j.top.2005.07.001
- Group Pairs with Property (T), from Arithmetic Lattices, Geometriae Dedicata, Volume 112 (2005) no. 1, p. 183 | DOI:10.1007/s10711-004-7609-8
- The Baum–Connes and the Farrell–Jones Conjectures in K- and L-Theory, Handbook of K-Theory (2005), p. 703 | DOI:10.1007/978-3-540-27855-9_15
- K-theory for Sp(n,1), Journal of Functional Analysis, Volume 221 (2005) no. 1, p. 226 | DOI:10.1016/j.jfa.2004.05.011
- Heisenberg-type groups and intertwining operators, Journal of Functional Analysis, Volume 212 (2004) no. 2, pp. 261-286 | DOI:10.1016/j.jfa.2004.03.013 | Zbl:1054.22005
- The Cayley transform and uniformly bounded representations, Journal of Functional Analysis, Volume 213 (2004) no. 2, pp. 241-269 | DOI:10.1016/j.jfa.2003.12.009 | Zbl:1054.22006
- The Gamma Element for Groups which Admit a Uniform Embedding into Hilbert Space, Recent Advances in Operator Theory, Operator Algebras, and their Applications (2004), p. 271 | DOI:10.1007/3-7643-7314-8_18
Cité par 15 documents. Sources : Crossref, zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier