Comptes Rendus
La conjecture de Baum–Connes à coefficients pour le groupe Sp(n,1)
Comptes Rendus. Mathématique, Volume 334 (2002) no. 7, pp. 533-538.

Nous montrons que les groupes de Lie Sp(n,1) vérifient la conjecture de Baum–Connes à coefficients arbitraires. L'outil essentiel de la preuve est la construction d'une famille de représentations uniformément bornées due à Cowling.

We show that the Lie groups Sp(n,1) satisfy the Baum–Connes conjecture with arbitrary coefficients. The main tool is the construction, due to Cowling, of a family of uniformly bounded representations.

Reçu le :
Publié le :
DOI : 10.1016/S1631-073X(02)02315-4

Pierre Julg 1

1 Université d'Orléans, MAPMO, BP 6759, 45067 Orléans cedex 2, France
@article{CRMATH_2002__334_7_533_0,
     author = {Pierre Julg},
     title = {La conjecture de {Baum{\textendash}Connes} \`a coefficients pour le groupe {Sp(\protect\emph{n},1)}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {533--538},
     publisher = {Elsevier},
     volume = {334},
     number = {7},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02315-4},
     language = {fr},
}
TY  - JOUR
AU  - Pierre Julg
TI  - La conjecture de Baum–Connes à coefficients pour le groupe Sp(n,1)
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 533
EP  - 538
VL  - 334
IS  - 7
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)02315-4
LA  - fr
ID  - CRMATH_2002__334_7_533_0
ER  - 
%0 Journal Article
%A Pierre Julg
%T La conjecture de Baum–Connes à coefficients pour le groupe Sp(n,1)
%J Comptes Rendus. Mathématique
%D 2002
%P 533-538
%V 334
%N 7
%I Elsevier
%R 10.1016/S1631-073X(02)02315-4
%G fr
%F CRMATH_2002__334_7_533_0
Pierre Julg. La conjecture de Baum–Connes à coefficients pour le groupe Sp(n,1). Comptes Rendus. Mathématique, Volume 334 (2002) no. 7, pp. 533-538. doi : 10.1016/S1631-073X(02)02315-4. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02315-4/

[1] F. Astengo, M. Cowling, B. Di Blasio, Preprint, 2001

[2] P. Baum; A. Connes; N. Higson Classifying space for proper actions and K-theory of group C*-algebras, $ C^{\ast }$C * -algebras: 1943–1993, Contemp. Math., 167, American Mathematical Society, 1994, pp. 240-291

[3] M. Christ; D. Geller; P. Glowacki; L. Polin Pseudodifferential operators on groups with dilatations, Duke Math. J., Volume 68 (1992), pp. 31-65

[4] M. Cowling Unitary and uniformly bounded representations of some simple Lie groups, Harmonic Analysis and Group Representations, Liguori, Naples, 1982, pp. 49-128

[5] N. Higson; G. Kasparov E-theory and KK-theory for groups which act properly and isometrically on Hilbert space, Invent. Math., Volume 144 (2001) no. 1, pp. 23-74

[6] N. Higson, V. Lafforgue, Preprint, 1999

[7] P. Julg Complexe de Rumin, suite spectrale de Forman et cohomologie L2 des espaces symétriques de rang 1, C. R. Acad. Sci. Paris, Série I, Volume 320 (1995) no. 4, pp. 451-456

[8] P. Julg Remarks on the Baum–Connes conjecture and Kazhdan's property T, Fields Instit. Commun., 13, American Mathematical Society, 1997, pp. 145-153

[9] P. Julg Travaux de Higson et Kasparov sur la conjecture de Baum–Connes, Séminaire Bourbaki, Exposé 841, Astérisque, 252, mars 1998, pp. 151-183

[10] P. Julg; G. Kasparov Operator K-theory for the group SU(n,1), J. Reine Angew. Math., Volume 463 (1995), pp. 99-152

[11] G. Kasparov Lorentz groupes: K-theory of unitary representations and crossed products, Soviet Math. Dokl., Volume 29 (1984) no. 2, pp. 256-260

[12] G. Kasparov Equivariant KK-theory and the Novikov conjecture, Invent. Math., Volume 91 (1988) no. 1, pp. 147-201

[13] V. Lafforgue Une démonstration de la conjecture de Baum–Connes pour les groupes réductifs sur un corps p-adique et pour certains groupes discrets possédant la propriété (T), C. R. Acad. Sci. Paris, Série I, Volume 327 (1998) no. 5, pp. 439-444

[14] M. Rumin Differential geometry on CC spaces and application to the Novikov–Shubin numbers of nilpotent Lie groups, C. R. Acad. Sci. Paris, Série I, Volume 329 (1999) no. 11, pp. 985-990

[15] A. Wassermann Une démonstration de la conjecture de Connes–Kasparov pour les groupes de Lie linéaires connexes réductifs, C. R. Acad. Sci. Paris, Série I, Volume 304 (1987) no. 18, pp. 559-562

  • Maria Paula Gomez Aparicio; Pierre Julg; Alain Valette The Baum-Connes conjecture: an extended survey, Advances in noncommutative geometry. Based on the noncommutative geometry conference, Shanghai, China, March 23 – April 7, 2017. On the occasion of Alain Connes' 70th Birthday, Cham: Springer, 2019, pp. 127-244 | DOI:10.1007/978-3-030-29597-4_3 | Zbl:1447.58006
  • Robert Yuncken Foliation C-algebras on multiply fibred manifolds, Journal of Functional Analysis, Volume 265 (2013) no. 9, pp. 1829-1839 | DOI:10.1016/j.jfa.2013.07.009 | Zbl:1286.46078
  • Robert Yuncken The Bernstein-Gelfand-Gelfand complex and Kasparov theory for {SL}(3,{{\mathbb}} {C}), Advances in Mathematics, Volume 226 (2011) no. 2, pp. 1474-1512 | DOI:10.1016/j.aim.2010.08.008 | Zbl:1215.19003
  • Otgonbayar Uuye The Baum-Connes conjecture for KK-theory, Journal of K-Theory, Volume 8 (2011) no. 1, pp. 3-29 | DOI:10.1017/is010003012jkt114 | Zbl:1243.19004
  • Paul F. Baum; Rubén J. Sánchez-García K-Theory for Group C∗-algebras, Topics in Algebraic and Topological K-Theory, Volume 2008 (2011), p. 1 | DOI:10.1007/978-3-642-15708-0_1
  • Robert Yuncken Products of longitudinal pseudodifferential operators on flag varieties, Journal of Functional Analysis, Volume 258 (2010) no. 4, pp. 1140-1166 | DOI:10.1016/j.jfa.2009.10.007 | Zbl:1183.43004
  • Michael Cowling Applications of Representation Theory to Harmonic Analysis of Lie Groups (and Vice Versa), Representation Theory and Complex Analysis, Volume 1931 (2008), p. 1 | DOI:10.1007/978-3-540-76892-0_1
  • Heath Emerson; Ralf Meyer Euler characteristics and Gysin sequences for group actions on boundaries, Mathematische Annalen, Volume 334 (2006) no. 4, pp. 853-904 | DOI:10.1007/s00208-005-0747-y | Zbl:1092.19003
  • Ralf Meyer; Ryszard Nest The Baum–Connes conjecture via localisation of categories, Topology, Volume 45 (2006) no. 2, p. 209 | DOI:10.1016/j.top.2005.07.001
  • Alain Valette Group Pairs with Property (T), from Arithmetic Lattices, Geometriae Dedicata, Volume 112 (2005) no. 1, p. 183 | DOI:10.1007/s10711-004-7609-8
  • Wolfgang Lück; Holger Reich The Baum–Connes and the Farrell–Jones Conjectures in K- and L-Theory, Handbook of K-Theory (2005), p. 703 | DOI:10.1007/978-3-540-27855-9_15
  • N. Prudhon K-theory for Sp(n,1), Journal of Functional Analysis, Volume 221 (2005) no. 1, p. 226 | DOI:10.1016/j.jfa.2004.05.011
  • A. H. Dooley Heisenberg-type groups and intertwining operators, Journal of Functional Analysis, Volume 212 (2004) no. 2, pp. 261-286 | DOI:10.1016/j.jfa.2004.03.013 | Zbl:1054.22005
  • F. Astengo; M. Cowling; B. Di Blasio The Cayley transform and uniformly bounded representations, Journal of Functional Analysis, Volume 213 (2004) no. 2, pp. 241-269 | DOI:10.1016/j.jfa.2003.12.009 | Zbl:1054.22006
  • Jean-Louis Tu The Gamma Element for Groups which Admit a Uniform Embedding into Hilbert Space, Recent Advances in Operator Theory, Operator Algebras, and their Applications (2004), p. 271 | DOI:10.1007/3-7643-7314-8_18

Cité par 15 documents. Sources : Crossref, zbMATH

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: