Let be an algebraic group and a finite subgroup of automorphisms of . Fix also a possibly ramified -covering . In this setting one may define the notion of -bundles over and, in this paper, we give a description of these objects in terms of -bundles on , for an appropriate group over which depends on the local type of the -bundles we intend to parametrize. This extends, and along the way clarifies, an earlier work of Balaji and Seshadri.
Soit un groupe algébrique et un sous-groupe fini d’automorphismes de . Nous fixons également un -revêtement éventuellement ramifié . Dans ce cadre, on peut définir la notion de -fibré sur et, dans cet article, nous donnons une description de ces objets en termes de -fibrés sur , pour un groupe sur qui dépend du type local des -fibrés que nous avons l’intention de paramétrer. Ceci étend, et en même temps clarifie, un travail antérieur de Balaji et Seshadri.
Revised:
Accepted:
Published online:
Chiara Damiolini 1, 2
@article{CRMATH_2024__362_G1_55_0, author = {Chiara Damiolini}, title = {On equivariant bundles and their moduli spaces}, journal = {Comptes Rendus. Math\'ematique}, pages = {55--62}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.524}, language = {en}, }
Chiara Damiolini. On equivariant bundles and their moduli spaces. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 55-62. doi : 10.5802/crmath.524. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.524/
[1] Moduli of parahoric -torsors on a compact Riemann surface, J. Algebr. Geom., Volume 24 (2015) no. 1, pp. 1-49 | DOI | MR | Zbl
[2] Vector bundles on Riemann surfaces and conformal field theory, Algebraic and geometric methods in mathematical physics (Kaciveli, 1993) (Mathematical Physics Studies), Volume 19, Kluwer Academic Publishers, 1993, pp. 145-166 | MR | Zbl
[3] Conformal blocks and generalized theta functions, Commun. Math. Phys., Volume 164 (1994) no. 2, pp. 385-419 | DOI | MR | Zbl
[4] Néron models, Ergebnisse der Mathematik und ihrer Grenzgebiete, 21, Springer, 1990, x+325 pages | DOI
[5] Groupes réductifs sur un corps local. II. Schémas en groupes. Existence d’une donnée radicielle valuée, Publ. Math., Inst. Hautes Étud. Sci., Volume 60 (1984), pp. 197-376
[6] Conformal blocks attached to twisted groups, Math. Z., Volume 295 (2020) no. 3-4, pp. 1643-1681 | DOI | MR | Zbl
[7] Local types of -bundles and parahoric group schemes, Proc. Lond. Math. Soc., Volume 127 (2023) no. 2, pp. 261-294 | DOI | MR | Zbl
[8] Néron models and tame ramification, Compos. Math., Volume 81 (1992) no. 3, pp. 291-306 | Numdam | Zbl
[9] Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV, Publ. Math., Inst. Hautes Étud. Sci., Volume 32 (1967), pp. 1-361 (rédigé avec la colloboration de J. Dieudonné) | Numdam | Zbl
[10] Uniformization of -bundles, Math. Ann., Volume 347 (2010) no. 3, pp. 499-528 | DOI | MR | Zbl
[11] Conformal blocks for galois covers of algebraic curves, Compos. Math., Volume 159 (2023) no. 10, pp. 2191-2259 | DOI | MR | Zbl
[12] Infinite Grassmannians and moduli spaces of -bundles, Math. Ann., Volume 300 (1994) no. 1, pp. 41-75 | DOI | MR | Zbl
[13] The line bundles on the moduli of parabolic -bundles over curves and their sections, Ann. Sci. Éc. Norm. Supér., Volume 30 (1997) no. 4, pp. 499-525 | DOI | Numdam | MR | Zbl
[14] Moduli of vector bundles on curves with parabolic structures, Math. Ann., Volume 248 (1980) no. 3, pp. 205-239 | DOI | MR | Zbl
[15] On tamely ramified -bundles on curves (2022) | arXiv
[16] Espaces de modules de fibrés paraboliques et blocs conformes., Duke Math. J., Volume 84 (1996) no. 1, pp. 217-235 | Zbl
[17] The moduli spaces of vector bundles over an algebraic curve, Math. Ann., Volume 200 (1973), pp. 69-84 | DOI | MR | Zbl
[18] La formule de Verlinde, Séminaire Bourbaki. Volume 1994/95. Exposés 790-804 (Astérisque), Volume 237, Société Mathématique de France, 1996, pp. 87-114 (Exp. No. 794) | Numdam | MR | Zbl
[19] Moduli spaces of anti-invariant vector bundles and twisted conformal blocks, Math. Res. Lett., Volume 26 (2019) no. 6, pp. 1849-1875 | DOI | MR | Zbl
Cited by Sources:
Comments - Policy