In this note, we derive an equation which describes the closure of a particular set comprising valued functions. This result provides an answer to a long standing question for which the particular case had been known and used frequently in the optimal control problems.
Revised:
Accepted:
Published online:
Keywords: $n-$valued functions, formulation, weak$^\star $ closure, rearrangements, eigenvalues
Mohsen Zivari-Rezapour 1; Yichen Liu 2; Behrouz Emamizadeh 3, 4
@article{CRMATH_2023__361_G10_1635_0, author = {Mohsen Zivari-Rezapour and Yichen Liu and Behrouz Emamizadeh}, title = {A formula for the sum of $n$ weak$^\star $ closed sets in $L^\infty $}, journal = {Comptes Rendus. Math\'ematique}, pages = {1635--1639}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, year = {2023}, doi = {10.5802/crmath.520}, language = {en}, }
TY - JOUR AU - Mohsen Zivari-Rezapour AU - Yichen Liu AU - Behrouz Emamizadeh TI - A formula for the sum of $n$ weak$^\star $ closed sets in $L^\infty $ JO - Comptes Rendus. Mathématique PY - 2023 SP - 1635 EP - 1639 VL - 361 PB - Académie des sciences, Paris DO - 10.5802/crmath.520 LA - en ID - CRMATH_2023__361_G10_1635_0 ER -
%0 Journal Article %A Mohsen Zivari-Rezapour %A Yichen Liu %A Behrouz Emamizadeh %T A formula for the sum of $n$ weak$^\star $ closed sets in $L^\infty $ %J Comptes Rendus. Mathématique %D 2023 %P 1635-1639 %V 361 %I Académie des sciences, Paris %R 10.5802/crmath.520 %G en %F CRMATH_2023__361_G10_1635_0
Mohsen Zivari-Rezapour; Yichen Liu; Behrouz Emamizadeh. A formula for the sum of $n$ weak$^\star $ closed sets in $L^\infty $. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 1635-1639. doi : 10.5802/crmath.520. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.520/
[1] On optimization problems with prescribed rearrangements, Nonlinear Anal., Theory Methods Appl., Volume 13 (1989) no. 2, pp. 185-220 | DOI | MR | Zbl
[2] Optimal location of resources and Steiner symmetry in a population dynamics model in heterogeneous environments, Ann. Fenn. Math., Volume 47 (2022) no. 1, pp. 305-324 | DOI
[3] Extremal eigenvalue problems for composite membranes. I, II, Appl. Math. Optim., Volume 22 (1990) no. 2, p. 153-167, 169–187 | MR | Zbl
[4] Optimization of the first eigenvalue in problems involving the -Laplacian, Proc. Am. Math. Soc., Volume 137 (2009) no. 5, pp. 1677-1687 | DOI | MR | Zbl
[5] Rearrangements of measurable functions, Ph. D. Thesis, California Institute of Technology (1970)
[6] Positive solutions of semilinear elliptic problems, Differential equations (Sao Paulo, 1981) (Lecture Notes in Mathematics), Volume 957, Springer, 1982, pp. 34-87 | Zbl
[7] Optimization of the shape and the location of the actuators in an internal control problem, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8), Volume 4 (2001) no. 3, pp. 737-757 | MR | Zbl
[8] Optimization problems for eigenvalues of -Laplace equations, J. Math. Anal. Appl., Volume 398 (2013) no. 2, pp. 766-775 | DOI | MR | Zbl
Cited by Sources:
Comments - Policy