Comptes Rendus
Partial differential equations, Control theory
A formula for the sum of n weak closed sets in L
Comptes Rendus. Mathématique, Volume 361 (2023), pp. 1635-1639.

In this note, we derive an equation which describes the closure of a particular set comprising n-valued functions. This result provides an answer to a long standing question for which the particular case n=2 had been known and used frequently in the optimal control problems.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.520
Classification: 26E40, 49R05
Keywords: $n-$valued functions, formulation, weak$^\star $ closure, rearrangements, eigenvalues

Mohsen Zivari-Rezapour 1; Yichen Liu 2; Behrouz Emamizadeh 3, 4

1 Department of Mathematics, Faculty of Mathematical Sciences and Computer, Shahid Chamran University of Ahvaz, Ahvaz, Iran
2 Department of Applied Mathematics, School of Mathematics and Physics, Xi’an Jiaotong-Liverpool University, Suzhou, China
3 Department of Mathematical Sciences, University of Nottingham Ningbo China, Ningbo, China
4 Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMATH_2023__361_G10_1635_0,
     author = {Mohsen Zivari-Rezapour and Yichen Liu and Behrouz Emamizadeh},
     title = {A formula for the sum of $n$ weak$^\star $ closed sets in $L^\infty $},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1635--1639},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     year = {2023},
     doi = {10.5802/crmath.520},
     language = {en},
}
TY  - JOUR
AU  - Mohsen Zivari-Rezapour
AU  - Yichen Liu
AU  - Behrouz Emamizadeh
TI  - A formula for the sum of $n$ weak$^\star $ closed sets in $L^\infty $
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 1635
EP  - 1639
VL  - 361
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.520
LA  - en
ID  - CRMATH_2023__361_G10_1635_0
ER  - 
%0 Journal Article
%A Mohsen Zivari-Rezapour
%A Yichen Liu
%A Behrouz Emamizadeh
%T A formula for the sum of $n$ weak$^\star $ closed sets in $L^\infty $
%J Comptes Rendus. Mathématique
%D 2023
%P 1635-1639
%V 361
%I Académie des sciences, Paris
%R 10.5802/crmath.520
%G en
%F CRMATH_2023__361_G10_1635_0
Mohsen Zivari-Rezapour; Yichen Liu; Behrouz Emamizadeh. A formula for the sum of $n$ weak$^\star $ closed sets in $L^\infty $. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 1635-1639. doi : 10.5802/crmath.520. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.520/

[1] Angelo Alvino; Guido Trombetti; Pierre-Louis Lions On optimization problems with prescribed rearrangements, Nonlinear Anal., Theory Methods Appl., Volume 13 (1989) no. 2, pp. 185-220 | DOI | MR | Zbl

[2] Claudia Anedda; Fabrizio Cuccu Optimal location of resources and Steiner symmetry in a population dynamics model in heterogeneous environments, Ann. Fenn. Math., Volume 47 (2022) no. 1, pp. 305-324 | DOI

[3] Steven J. Cox; Joyce R. McLaughlin Extremal eigenvalue problems for composite membranes. I, II, Appl. Math. Optim., Volume 22 (1990) no. 2, p. 153-167, 169–187 | MR | Zbl

[4] Fabrizio Cuccu; Behrouz Emamizadeh; Giovanni Porru Optimization of the first eigenvalue in problems involving the p-Laplacian, Proc. Am. Math. Soc., Volume 137 (2009) no. 5, pp. 1677-1687 | DOI | MR | Zbl

[5] Peter W. Day Rearrangements of measurable functions, Ph. D. Thesis, California Institute of Technology (1970)

[6] Djairo G. de Figueiredo Positive solutions of semilinear elliptic problems, Differential equations (Sao Paulo, 1981) (Lecture Notes in Mathematics), Volume 957, Springer, 1982, pp. 34-87 | Zbl

[7] Antoine Henrot; Hervé Maillot Optimization of the shape and the location of the actuators in an internal control problem, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8), Volume 4 (2001) no. 3, pp. 737-757 | MR | Zbl

[8] Monica Marras; Giovanni Porru; Stella Vernier-Piro Optimization problems for eigenvalues of p-Laplace equations, J. Math. Anal. Appl., Volume 398 (2013) no. 2, pp. 766-775 | DOI | MR | Zbl

Cited by Sources:

Comments - Policy