Drinfeld in 2010 proved the companions conjecture for smooth varieties over a finite field, generalizing L. Lafforgue’s result for smooth curves. We study the obstruction to prove the conjecture for arbitrary normal varieties. To do this, we introduce a new property of morphisms. We verify this property in some cases, showing thereby the companions conjecture for some singular normal varieties.
Revised:
Accepted:
Published online:
Keywords: $\ell $-adic representation, independence of $\ell $, étale fundamental group
Marco D’Addezio 1

@article{CRMATH_2024__362_G1_63_0, author = {Marco D{\textquoteright}Addezio}, title = {Some remarks on the companions conjecture for normal varieties}, journal = {Comptes Rendus. Math\'ematique}, pages = {63--69}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.527}, language = {en}, }
Marco D’Addezio. Some remarks on the companions conjecture for normal varieties. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 63-69. doi : 10.5802/crmath.527. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.527/
[1] The monodromy groups of lisse sheaves and overconvergent -isocrystals, Sel. Math., New Ser., Volume 26 (2020) no. 3, 45, 41 pages | MR | Zbl
[2] La Conjecture de Weil. II, Publ. Math., Inst. Hautes Étud. Sci., Volume 52 (1980), pp. 137-252 | DOI | Numdam | Zbl
[3] Finitude de l’extension de engendrée par des traces de Frobenius, en caractéristique finie, Mosc. Math. J., Volume 12 (2012) no. 3, pp. 497-514 | DOI | Zbl
[4] On a conjecture of Deligne, Mosc. Math. J., Volume 12 (2012), pp. 515-542 | DOI | MR | Zbl
[5] Revêtements étales et groupe fondamental (SGA 1), Lecture Notes in Mathematics, 224, Springer, 1971 | DOI
[6] Chtoucas de Drinfeld et correspondance de Langlands, Invent. Math., Volume 147 (2002) no. 1, pp. 1-241 | DOI | MR | Zbl
[7] Abelian varieties, -adic representations, and -independence, Math. Ann., Volume 302 (1995) no. 3, pp. 561-580 | DOI | MR | Zbl
[8] Observations on harmonic maps and singular varieties, Ann. Sci. Éc. Norm. Supér., Volume 29 (1996) no. 2, pp. 135-148 | DOI | Numdam | MR | Zbl
[9] A Stratification of a Moduli Space of Abelian Varieties, Moduli of Abelian varieties (Progress in Mathematics), Volume 195, Birkhäuser, 2001, pp. 345-416 | DOI | MR | Zbl
[10] Stacks Project (http://stacks.math.columbia.edu)
[11] A general Seifert-Van Kampen theorem for algebraic fundamental groups, Publ. Res. Inst. Math. Sci., Volume 42 (2006) no. 3, pp. 763-786 | DOI | MR | Zbl
Cited by Sources:
Comments - Policy