For integer and , we define to be the set of all integers which can be written as a sum of , not necessarily distinct, elements of . The set is called an asymptotic basis of order if for all sufficiently large integers . An asymptotic basis of order is minimal if no proper subset of is an asymptotic basis of order . For , denote by the set of all finite, nonempty subsets of . Let be the set of all numbers of the form , where . In this paper, we give some characterizations of the partitions with the property that is a minimal asymptotic basis of order . This generalizes a result of Chen and Chen, recent result of Ling and Tang, and also recent result of Sun.
Revised:
Accepted:
Published online:
Keywords: Asymptotic bases, minimal asymptotic bases, binary representation
Shi-Qiang Chen 1; Csaba Sándor 2, 3, 4; Quan-Hui Yang 5

@article{CRMATH_2024__362_G1_71_0, author = {Shi-Qiang Chen and Csaba S\'andor and Quan-Hui Yang}, title = {On a problem of {Nathanson} related to minimal asymptotic bases of order $h$}, journal = {Comptes Rendus. Math\'ematique}, pages = {71--76}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.530}, language = {en}, }
TY - JOUR AU - Shi-Qiang Chen AU - Csaba Sándor AU - Quan-Hui Yang TI - On a problem of Nathanson related to minimal asymptotic bases of order $h$ JO - Comptes Rendus. Mathématique PY - 2024 SP - 71 EP - 76 VL - 362 PB - Académie des sciences, Paris DO - 10.5802/crmath.530 LA - en ID - CRMATH_2024__362_G1_71_0 ER -
Shi-Qiang Chen; Csaba Sándor; Quan-Hui Yang. On a problem of Nathanson related to minimal asymptotic bases of order $h$. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 71-76. doi : 10.5802/crmath.530. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.530/
[1] On minimal asymptotic bases, Eur. J. Comb., Volume 32 (2011) no. 8, pp. 1329-1335 | DOI | MR | Zbl
[2] On a problem of Nathanson, Acta Arith., Volume 185 (2018) no. 3, pp. 275-280 | DOI | MR | Zbl
[3] Minimal asymptotic bases for the natural numbers, J. Number Theory, Volume 12 (1980), pp. 154-159 | DOI | MR | Zbl
[4] Ein Beitrag zur Theorie der Minimalbasen, J. Reine Angew. Math., Volume 196 (1956), pp. 170-204 | DOI | MR | Zbl
[5] Dense minimal asymptotic bases of order two, J. Number Theory, Volume 130 (2010) no. 3, pp. 580-585 | DOI | MR | Zbl
[6] A simple construction of minimal asymptotic bases, Acta Arith., Volume 52 no. 2, pp. 95-101 | MR | Zbl
[7] Some remarks on minimal asymptotic bases of order three, Bull. Aust. Math. Soc., Volume 102 (2020) no. 1, pp. 21-30 | DOI | MR | Zbl
[8] Minimal bases and powers of , Acta Arith., Volume 49 (1988) no. 5, pp. 525-532 | DOI | MR | Zbl
[9] On the maximum density of minimal asymptotic bases, Proc. Am. Math. Soc., Volume 105 (1989) no. 1, pp. 31-33 | DOI | MR | Zbl
[10] Gelöste und ungelöste Fragen über Basen der natürlichen Zahlenreihe II, J. Reine Angew. Math., Volume 194 (1955), pp. 40-65 | DOI
[11] On a problem of Nathanson on minimal asymptotic bases, J. Number Theory, Volume 218 (2021), pp. 152-160 | MR | Zbl
[12] On asymptotic bases and minimal asymptotic bases, Colloq. Math., Volume 170 (2022) no. 1, pp. 65-77 | DOI | MR | Zbl
Cited by Sources:
Comments - Policy