We complete the work of Lanneau–Möller [4] to show that there are no primitive Teichmüller curves in .
Nous terminons un travail initié par Lanneau et Möller [4] en montrant qu’il n’existe pas de courbes de Teichmüller primitives dans .
Accepted:
Published online:
Julien Boulanger 1; Sam Freedman 2

@article{CRMATH_2024__362_G2_167_0, author = {Julien Boulanger and Sam Freedman}, title = {There are no primitive {Teichm\"uller} curves in $\mathrm{Prym}(2,2)$}, journal = {Comptes Rendus. Math\'ematique}, pages = {167--170}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.551}, language = {en}, }
Julien Boulanger; Sam Freedman. There are no primitive Teichmüller curves in $\mathrm{Prym}(2,2)$. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 167-170. doi : 10.5802/crmath.551. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.551/
[1] Teichmüller curves in genus three and just likely intersections in , Publ. Math., Inst. Hautes Étud. Sci., Volume 124 (2014), pp. 1-98 | DOI | Zbl
[2] A new orbit closure in genus 8? (2021) | arXiv | DOI
[3] An Introduction to Veech Surfaces, Handbook of dynamical systems. Volume 1B, Elsevier, 2006, pp. 501-526 | Zbl
[4] Non-Existence and Finiteness Results for Teichmüller Curves in Prym Loci, Exp. Math., Volume 31 (2019), pp. 621-636 | DOI | Zbl
[5] Teichmüller curves in genus two: Torsion divisors and ratios of sines, Invent. Math., Volume 165 (2006) no. 3, pp. 651-672 | DOI | Zbl
[6] Dynamics of over moduli space in genus two, Ann. Math., Volume 165 (2007) no. 2, pp. 397-456 | DOI | MR | Zbl
[7] Billiards and Teichmülller curves (2021) (https://people.math.harvard.edu/~ctm/papers/home/text/papers/tsurv/tsurv.pdf)
[8] Geometry of Teichmüller curves, Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018. Vol. III. Invited lectures, World Scientific (2018), pp. 2017-2034 | DOI | Zbl
Cited by Sources:
Comments - Policy