[Existence d’un bon modèle minimal pour les variétés kählériennes de dimension d’Albanese maximale]
Dans ce court article, nous montrons que si est une paire kählérienne compacte klt de dimension d’Albanese maximale, admet un bon modèle minimal, c’est-à-dire qu’il existe une contraction biméromorphe telle que est semi-ample.
In this short article we show that if is a compact Kähler klt pair of maximal Albanese dimension, then it has a good minimal model, i.e. there is a bimeromorphic contraction such that is semi-ample.
Accepté le :
Publié le :
Omprokash Das 1 ; Christopher Hacon 2
@article{CRMATH_2024__362_S1_83_0, author = {Omprokash Das and Christopher Hacon}, title = {Existence of {Good} {Minimal} {Models} for {K\"ahler} varieties of {Maximal} {Albanese} {Dimension}}, journal = {Comptes Rendus. Math\'ematique}, pages = {83--91}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, number = {S1}, year = {2024}, doi = {10.5802/crmath.581}, language = {en}, }
TY - JOUR AU - Omprokash Das AU - Christopher Hacon TI - Existence of Good Minimal Models for Kähler varieties of Maximal Albanese Dimension JO - Comptes Rendus. Mathématique PY - 2024 SP - 83 EP - 91 VL - 362 IS - S1 PB - Académie des sciences, Paris DO - 10.5802/crmath.581 LA - en ID - CRMATH_2024__362_S1_83_0 ER -
Omprokash Das; Christopher Hacon. Existence of Good Minimal Models for Kähler varieties of Maximal Albanese Dimension. Comptes Rendus. Mathématique, Volume 362 (2024) no. S1, pp. 83-91. doi : 10.5802/crmath.581. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.581/
[1] Existence of minimal models for varieties of log general type, J. Am. Math. Soc., Volume 23 (2010) no. 2, pp. 405-468 | DOI | MR | Zbl
[2] The adjunction theory of complex projective varieties, De Gruyter Expositions in Mathematics, 16, Walter de Gruyter, 1995, xxii+398 pages | DOI | MR
[3] Rational curves on compact Kähler manifolds, J. Differ. Geom., Volume 114 (2020) no. 1, pp. 1-39 | DOI | MR | Zbl
[4] The log minimal model program for Kähler -folds (2020) (https://arxiv.org/abs/2009.05924, to appear in J. Differ. Geom.) | arXiv
[5] On the -dimensional minimal model program for Kähler varieties, Adv. Math., Volume 443 (2024), 109615, 68 pages | arXiv | DOI | Zbl
[6] Some Remarks on the Minimal Model Program for Log Canonical Pairs, J. Math. Sci., Tokyo, Volume 22 (2015), pp. 149-192 | MR | Zbl
[7] Minimal model program for projective morphisms between complex analytic spaces (2022) (https://arxiv.org/abs/2201.11315) | arXiv
[8] Vanishing theorems for projective morphisms between complex analytic spaces (2022) (https://arxiv.org/abs/2205.14801) | arXiv
[9] Flattening theorem in complex-analytic geometry, Am. J. Math., Volume 97 (1975), pp. 503-547 | DOI | MR | Zbl
[10] Minimal models for Kähler threefolds, Invent. Math., Volume 203 (2016) no. 1, pp. 217-264 | DOI | MR | Zbl
[11] Existence of log canonical closures, Invent. Math., Volume 192 (2013) no. 1, pp. 161-195 | DOI | MR | Zbl
[12] Minimal models and the Kodaira dimension of algebraic fiber spaces, J. Reine Angew. Math., Volume 363 (1985), pp. 1-46 | DOI | MR | Zbl
[13] Duality between and with its application to Picard sheaves, Nagoya Math. J., Volume 81 (1981), pp. 153-175 | DOI | MR | Zbl
[14] Hodge modules on complex tori and generic vanishing for compact Kähler manifolds, Geom. Topol., Volume 21 (2017) no. 4, pp. 2419-2460 | DOI | MR | Zbl
[15] Kähler spaces and proper open morphisms, Math. Ann., Volume 283 (1989) no. 1, pp. 13-52 | DOI | MR | Zbl
[16] On the Iitaka conjecture for Kähler fibre spaces, Ann. Fac. Sci. Toulouse, Math., Volume 30 (2021) no. 4, pp. 813-897 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique