Comptes Rendus
Article de recherche - Géométrie algébrique
Existence of Good Minimal Models for Kähler varieties of Maximal Albanese Dimension
[Existence d’un bon modèle minimal pour les variétés kählériennes de dimension d’Albanese maximale]
Comptes Rendus. Mathématique, Volume 362 (2024) no. S1, pp. 83-91.

Dans ce court article, nous montrons que si (X,B) est une paire kählérienne compacte klt de dimension d’Albanese maximale, (X,B) admet un bon modèle minimal, c’est-à-dire qu’il existe une contraction biméromorphe ϕ:XX telle que K X +B est semi-ample.

In this short article we show that if (X,B) is a compact Kähler klt pair of maximal Albanese dimension, then it has a good minimal model, i.e. there is a bimeromorphic contraction ϕ:XX such that K X +B is semi-ample.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.581

Omprokash Das 1 ; Christopher Hacon 2

1 School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Navy Nagar, Colaba, Mumbai 400005
2 Department of Mathematics, University of Utah, 155 S 1400 E, Salt Lake City, Utah 84112, USA
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2024__362_S1_83_0,
     author = {Omprokash Das and Christopher Hacon},
     title = {Existence of {Good} {Minimal} {Models} for {K\"ahler} varieties of {Maximal} {Albanese} {Dimension}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {83--91},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {362},
     number = {S1},
     year = {2024},
     doi = {10.5802/crmath.581},
     language = {en},
}
TY  - JOUR
AU  - Omprokash Das
AU  - Christopher Hacon
TI  - Existence of Good Minimal Models for Kähler varieties of Maximal Albanese Dimension
JO  - Comptes Rendus. Mathématique
PY  - 2024
SP  - 83
EP  - 91
VL  - 362
IS  - S1
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.581
LA  - en
ID  - CRMATH_2024__362_S1_83_0
ER  - 
%0 Journal Article
%A Omprokash Das
%A Christopher Hacon
%T Existence of Good Minimal Models for Kähler varieties of Maximal Albanese Dimension
%J Comptes Rendus. Mathématique
%D 2024
%P 83-91
%V 362
%N S1
%I Académie des sciences, Paris
%R 10.5802/crmath.581
%G en
%F CRMATH_2024__362_S1_83_0
Omprokash Das; Christopher Hacon. Existence of Good Minimal Models for Kähler varieties of Maximal Albanese Dimension. Comptes Rendus. Mathématique, Volume 362 (2024) no. S1, pp. 83-91. doi : 10.5802/crmath.581. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.581/

[1] Caucher Birkar; Paolo Cascini; Christopher D. Hacon; James McKernan Existence of minimal models for varieties of log general type, J. Am. Math. Soc., Volume 23 (2010) no. 2, pp. 405-468 | DOI | MR | Zbl

[2] Mauro C. Beltrametti; Andrew J. Sommese The adjunction theory of complex projective varieties, De Gruyter Expositions in Mathematics, 16, Walter de Gruyter, 1995, xxii+398 pages | DOI | MR

[3] Junyan Cao; Andreas Höring Rational curves on compact Kähler manifolds, J. Differ. Geom., Volume 114 (2020) no. 1, pp. 1-39 | DOI | MR | Zbl

[4] Omprokash Das; Christopher Hacon The log minimal model program for Kähler 3-folds (2020) (https://arxiv.org/abs/2009.05924, to appear in J. Differ. Geom.) | arXiv

[5] Omprokash Das; Christopher Hacon; Mihai Păun On the 4-dimensional minimal model program for Kähler varieties, Adv. Math., Volume 443 (2024), 109615, 68 pages | arXiv | DOI | Zbl

[6] Osamu Fujino Some Remarks on the Minimal Model Program for Log Canonical Pairs, J. Math. Sci., Tokyo, Volume 22 (2015), pp. 149-192 | MR | Zbl

[7] Osamu Fujino Minimal model program for projective morphisms between complex analytic spaces (2022) (https://arxiv.org/abs/2201.11315) | arXiv

[8] Osamu Fujino Vanishing theorems for projective morphisms between complex analytic spaces (2022) (https://arxiv.org/abs/2205.14801) | arXiv

[9] Heisuke Hironaka Flattening theorem in complex-analytic geometry, Am. J. Math., Volume 97 (1975), pp. 503-547 | DOI | MR | Zbl

[10] Andreas Höring; Thomas Peternell Minimal models for Kähler threefolds, Invent. Math., Volume 203 (2016) no. 1, pp. 217-264 | DOI | MR | Zbl

[11] Christopher Hacon; Chenyang Xu Existence of log canonical closures, Invent. Math., Volume 192 (2013) no. 1, pp. 161-195 | DOI | MR | Zbl

[12] Yujiro Kawamata Minimal models and the Kodaira dimension of algebraic fiber spaces, J. Reine Angew. Math., Volume 363 (1985), pp. 1-46 | DOI | MR | Zbl

[13] Shigeru Mukai Duality between D(X) and D(X ^) with its application to Picard sheaves, Nagoya Math. J., Volume 81 (1981), pp. 153-175 | DOI | MR | Zbl

[14] Giuseppe Pareschi; Mihnea Popa; Christian Schnell Hodge modules on complex tori and generic vanishing for compact Kähler manifolds, Geom. Topol., Volume 21 (2017) no. 4, pp. 2419-2460 | DOI | MR | Zbl

[15] Jean Varouchas Kähler spaces and proper open morphisms, Math. Ann., Volume 283 (1989) no. 1, pp. 13-52 | DOI | MR | Zbl

[16] Juanyong Wang On the Iitaka conjecture C n,m for Kähler fibre spaces, Ann. Fac. Sci. Toulouse, Math., Volume 30 (2021) no. 4, pp. 813-897 | DOI | MR | Zbl

Cité par Sources :

Commentaires - Politique