Comptes Rendus
Research article - Numerical analysis
Some properties of a modified Hilbert transform
Comptes Rendus. Mathématique, Volume 362 (2024), pp. 799-806.

Recently, Steinbach et al. introduced a novel operator T :L 2 (0,T)L 2 (0,T), known as the modified Hilbert transform. This operator has shown its significance in space-time formulations related to the heat and wave equations. In this paper, we establish a direct connection between the modified Hilbert transform T and the canonical Hilbert transform . Specifically, we prove the relationship T φ=-φ ˜, where φL 2 (0,T) and φ ˜ is a suitable extension of φ over the entire . By leveraging this crucial result, we derive some properties of T , including a new inversion formula, that emerge as immediate consequences of well-established findings on .

Récemment, Steinbach et al. ont introduit un nouvel opérateur T :L 2 (0,T)L 2 (0,T), connu sous le nom de transformée de Hilbert modifiée. Cet opérateur a montré son importance dans les formulations spatio-temporelles liées aux équations de la chaleur et des ondes. Dans cet article, nous établissons un lien direct entre la transformée de Hilbert modifiée T et la transformée de Hilbert canonique . Plus précisément, nous prouvons la relation T φ=-φ ˜, où φL 2 (0,T) et φ ˜ est une extension appropriée de φ sur l’ensemble de . En tirant parti de ce résultat crucial, nous déduisons certaines propriétés de T , y compris une nouvelle formule d’inversion, qui émergent comme des conséquences immédiates de résultats bien établis sur .

Received:
Accepted:
Published online:
DOI: 10.5802/crmath.600
Classification: 44A15

Matteo Ferrari 1

1 University of Vienna, Faculty of Mathematics, Oskar-Morgenstern-Platz 1, 1090, Vienna, Austria
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMATH_2024__362_G7_799_0,
     author = {Matteo Ferrari},
     title = {Some properties of a modified {Hilbert} transform},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {799--806},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {362},
     year = {2024},
     doi = {10.5802/crmath.600},
     language = {en},
}
TY  - JOUR
AU  - Matteo Ferrari
TI  - Some properties of a modified Hilbert transform
JO  - Comptes Rendus. Mathématique
PY  - 2024
SP  - 799
EP  - 806
VL  - 362
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.600
LA  - en
ID  - CRMATH_2024__362_G7_799_0
ER  - 
%0 Journal Article
%A Matteo Ferrari
%T Some properties of a modified Hilbert transform
%J Comptes Rendus. Mathématique
%D 2024
%P 799-806
%V 362
%I Académie des sciences, Paris
%R 10.5802/crmath.600
%G en
%F CRMATH_2024__362_G7_799_0
Matteo Ferrari. Some properties of a modified Hilbert transform. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 799-806. doi : 10.5802/crmath.600. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.600/

[1] P. L. Butzer; R. J. Nessel Fourier analysis and approximation. Vol. 1. One-dimensional theory, Academic Press Inc., 1971 | DOI | Zbl

[2] D. Hilbert Grundzüge einer allgemeinen theorie der linearen integralgleichungen, Nachr. Ges. Wiss. Göttingen, Math.-Phys. Kl., Volume 3 (1904), pp. 213-259 | Zbl

[3] E. Hille Analytic function theory. Vol. 1, Ginn and Company, 1959 | Zbl

[4] J. I. M. Hauser; M. Zank Numerical study of conforming space-time methods for Maxwell’s equations, Numer. Methods Partial Differ. Equations, Volume 40 (2024) no. 2, e23070 | DOI | Zbl

[5] F. W. King Hilbert transforms. Vol. 1, Cambridge University Press, 2009 | DOI | Zbl

[6] J. N. Pandey The Hilbert transform of periodic distributions, Integral Transforms Spec. Funct., Volume 5 (1997), pp. 117-142 | DOI | Zbl

[7] I. Perugia; C. Schwab; M. Zank Exponential convergence of hp-time-stepping in space-time discretizations of parabolic PDEs, ESAIM, Math. Model. Numer. Anal., Volume 57 (2023), pp. 29-67 | DOI | Zbl

[8] O. Steinbach; A. Missoni A note on a modified Hilbert transform, Appl. Anal., Volume 102 (2023), pp. 2583-2590 | DOI | Zbl

[9] O. Steinbach; C. Urzúa-Torres; M. Zank Towards coercive boundary element methods for the wave equation, J. Integral Equations Appl., Volume 34 (2022), pp. 501-515 | DOI | Zbl

[10] O. Steinbach; M. Zank Coercive space-time finite element methods for initial boundary value problems, Electron. Trans. Numer. Anal., Volume 52 (2020), pp. 154-194 | DOI | Zbl

[11] O. Steinbach; M. Zank A note on the efficient evaluation of a modified Hilbert transformation, J. Numer. Math., Volume 29 (2021), pp. 47-61 | DOI | Zbl

Cited by Sources:

Comments - Policy