Recently, Steinbach et al. introduced a novel operator , known as the modified Hilbert transform. This operator has shown its significance in space-time formulations related to the heat and wave equations. In this paper, we establish a direct connection between the modified Hilbert transform and the canonical Hilbert transform . Specifically, we prove the relationship , where and is a suitable extension of over the entire . By leveraging this crucial result, we derive some properties of , including a new inversion formula, that emerge as immediate consequences of well-established findings on .
Récemment, Steinbach et al. ont introduit un nouvel opérateur , connu sous le nom de transformée de Hilbert modifiée. Cet opérateur a montré son importance dans les formulations spatio-temporelles liées aux équations de la chaleur et des ondes. Dans cet article, nous établissons un lien direct entre la transformée de Hilbert modifiée et la transformée de Hilbert canonique . Plus précisément, nous prouvons la relation , où et est une extension appropriée de sur l’ensemble de . En tirant parti de ce résultat crucial, nous déduisons certaines propriétés de , y compris une nouvelle formule d’inversion, qui émergent comme des conséquences immédiates de résultats bien établis sur .
Accepted:
Published online:
Matteo Ferrari 1
@article{CRMATH_2024__362_G7_799_0, author = {Matteo Ferrari}, title = {Some properties of a modified {Hilbert} transform}, journal = {Comptes Rendus. Math\'ematique}, pages = {799--806}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.600}, language = {en}, }
Matteo Ferrari. Some properties of a modified Hilbert transform. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 799-806. doi : 10.5802/crmath.600. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.600/
[1] Fourier analysis and approximation. Vol. 1. One-dimensional theory, Academic Press Inc., 1971 | DOI | Zbl
[2] Grundzüge einer allgemeinen theorie der linearen integralgleichungen, Nachr. Ges. Wiss. Göttingen, Math.-Phys. Kl., Volume 3 (1904), pp. 213-259 | Zbl
[3] Analytic function theory. Vol. 1, Ginn and Company, 1959 | Zbl
[4] Numerical study of conforming space-time methods for Maxwell’s equations, Numer. Methods Partial Differ. Equations, Volume 40 (2024) no. 2, e23070 | DOI | Zbl
[5] Hilbert transforms. Vol. 1, Cambridge University Press, 2009 | DOI | Zbl
[6] The Hilbert transform of periodic distributions, Integral Transforms Spec. Funct., Volume 5 (1997), pp. 117-142 | DOI | Zbl
[7] Exponential convergence of -time-stepping in space-time discretizations of parabolic PDEs, ESAIM, Math. Model. Numer. Anal., Volume 57 (2023), pp. 29-67 | DOI | Zbl
[8] A note on a modified Hilbert transform, Appl. Anal., Volume 102 (2023), pp. 2583-2590 | DOI | Zbl
[9] Towards coercive boundary element methods for the wave equation, J. Integral Equations Appl., Volume 34 (2022), pp. 501-515 | DOI | Zbl
[10] Coercive space-time finite element methods for initial boundary value problems, Electron. Trans. Numer. Anal., Volume 52 (2020), pp. 154-194 | DOI | Zbl
[11] A note on the efficient evaluation of a modified Hilbert transformation, J. Numer. Math., Volume 29 (2021), pp. 47-61 | DOI | Zbl
Cited by Sources:
Comments - Policy