Comptes Rendus
Article de recherche - Théorie des nombres
On the number of residues of certain second-order linear recurrences
[Sur le nombre de résidus de certaines récurrences linéaires du second ordre]
Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1365-1377.

Pour chaque polynôme monique f[X] avec deg(f)1, soit (f) l’ensemble de toutes les récurrences linéaires avec des valeurs dans et un polynôme caractéristique f, et soit

(f):=ρ (x;m) : x (f) , m + ,

ρ(x;m) est le nombre de résidus distincts de x modulo m.

Dubickas et Novikas ont prouvé que (X 2 -X-1)= + . Nous généralisons ce résultat en montrant que (X 2 -a 1 X-1)= + pour tout entier non nul a 1 . Comme corollaire, nous déduisons que pour tous les entiers a 1 1 et k2, il existe ξ tel que la séquence des parties fractionnaires frac ( ξ α n ) n0 , où α:=a 1 + a 1 2 +4 ,/2, a exactement k points de limite. Nos preuves sont constructives et utilisent certains résultats sur l’existence de diviseurs primitifs spéciaux de certaines séquences de Lehmer.

For every monic polynomial f[X] with deg(f)1, let (f) be the set of all linear recurrences with values in and characteristic polynomial f, and let

(f):=ρ (x;m) : x (f) , m + ,

where ρ(x;m) is the number of distinct residues of x modulo m.

Dubickas and Novikas proved that (X 2 -X-1)= + . We generalize this result by showing that (X 2 -a 1 X-1)= + for every nonzero integer a 1 . As a corollary, we deduce that for all integers a 1 1 and k2 there exists ξ such that the sequence of fractional parts frac ( ξ α n ) n0 , where α:=a 1 + a 1 2 +4 /2, has exactly k limit points. Our proofs are constructive and employ some results on the existence of special primitive divisors of certain Lehmer sequences.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.647
Classification : 11B37, 11B39, 11B50, 11K16
Keywords: Fractional parts of powers, Lehmer sequences, linear recurrences, Pisot numbers, primitive divisors, residues
Mot clés : Parties fractionnaires des puissances, suites de Lehmer, récurrences linéaires, nombres de Pisot, diviseurs primitifs, résidus

Federico Accossato 1 ; Carlo Sanna 1

1 Department of Mathematical Sciences, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2024__362_G11_1365_0,
     author = {Federico Accossato and Carlo Sanna},
     title = {On the number of residues of certain second-order linear recurrences},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1365--1377},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {362},
     year = {2024},
     doi = {10.5802/crmath.647},
     language = {en},
}
TY  - JOUR
AU  - Federico Accossato
AU  - Carlo Sanna
TI  - On the number of residues of certain second-order linear recurrences
JO  - Comptes Rendus. Mathématique
PY  - 2024
SP  - 1365
EP  - 1377
VL  - 362
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.647
LA  - en
ID  - CRMATH_2024__362_G11_1365_0
ER  - 
%0 Journal Article
%A Federico Accossato
%A Carlo Sanna
%T On the number of residues of certain second-order linear recurrences
%J Comptes Rendus. Mathématique
%D 2024
%P 1365-1377
%V 362
%I Académie des sciences, Paris
%R 10.5802/crmath.647
%G en
%F CRMATH_2024__362_G11_1365_0
Federico Accossato; Carlo Sanna. On the number of residues of certain second-order linear recurrences. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1365-1377. doi : 10.5802/crmath.647. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.647/

[1] Brandon Avila; Yongyi Chen On moduli for which the Lucas numbers contain a complete residue system, Fibonacci Q., Volume 51 (2013) no. 2, pp. 151-152 | DOI | MR | Zbl

[2] Yu. Bilu; G. Hanrot; P. M. Voutier Existence of primitive divisors of Lucas and Lehmer numbers. With an appendix by M. Mignotte, J. Reine Angew. Math., Volume 539 (2001), pp. 75-122 | DOI | MR | Zbl

[3] R. T. Bumby A distribution property for linear recurrence of the second order, Proc. Am. Math. Soc., Volume 50 (1975), pp. 101-106 | DOI | MR | Zbl

[4] S. A. Burr On moduli for which the Fibonacci sequence contains a complete system of residues, Fibonacci Q., Volume 9 (1971) no. 5, pp. 497-504 | DOI | MR | Zbl

[5] Artūras Dubickas; Aivaras Novikas Linear recurrence sequences without zeros, Czech. Math. J., Volume 64(139) (2014) no. 3, pp. 857-865 | DOI | MR | Zbl

[6] Artūras Dubickas; Aivaras Novikas Recurrence with prescribed number of residues, J. Number Theory, Volume 215 (2020), pp. 120-137 | DOI | MR | Zbl

[7] Artūras Dubickas There are infinitely many limit points of the fractional parts of powers, Proc. Indian Acad. Sci., Math. Sci., Volume 115 (2005) no. 4, pp. 391-397 | DOI | MR | Zbl

[8] Artūras Dubickas Arithmetical properties of powers of algebraic numbers, Bull. Lond. Math. Soc., Volume 38 (2006) no. 1, pp. 70-80 | DOI | MR | Zbl

[9] Artūras Dubickas On the limit points of the fractional parts of powers of Pisot numbers, Arch. Math., Brno, Volume 42 (2006) no. 2, pp. 151-158 | MR | Zbl

[10] Graham Everest; Alf van der Poorten; Igor Shparlinski; Thomas Ward Recurrence sequences, Mathematical Surveys and Monographs, 104, American Mathematical Society, 2003, xiv+318 pages | DOI | MR | Zbl

[11] Tamás Herendi Uniform distribution of linear recurring sequences modulo prime powers, Finite Fields Appl., Volume 10 (2004) no. 1, pp. 1-23 | DOI | MR | Zbl

[12] Mohammad Javaheri; Stephanie Cambrea The distribution of Fibonacci numbers modulo primes, Am. Math. Mon., Volume 129 (2022) no. 1, pp. 75-79 | DOI | MR | Zbl

[13] H. Niederreiter; A. Schinzel; L. Somer Maximal frequencies of elements in second-order linear recurring sequences over a finite field, Elem. Math., Volume 46 (1991) no. 5, pp. 139-143 | MR | Zbl

[14] Charles Pisot Répartition ( mod 1) des puissances successives des nombres réels, Comment. Math. Helv., Volume 19 (1946), pp. 153-160 | DOI | MR | Zbl

[15] Carlo Sanna On the number of residues of linear recurrences, Res. Number Theory, Volume 8 (2022) no. 1, 7, 10 pages | DOI | MR | Zbl

[16] A. Schinzel Special Lucas sequences, including the Fibonacci sequence, modulo a prime, A tribute to Paul Erdős, Cambridge University Press, 1990, pp. 349-357 | DOI | MR | Zbl

[17] Lawrence Somer; Michal Křížek On moduli for which certain second-order linear recurrences contain a complete system of residues modulo m, Fibonacci Q., Volume 55 (2017) no. 3, pp. 209-228 | DOI | MR | Zbl

[18] Lawrence Somer Primes having an incomplete system of residues for a class of second-order recurrences, Applications of Fibonacci numbers (San Jose, CA, 1986), Kluwer Academic Publishers, 1988, pp. 113-141 | DOI | MR | Zbl

[19] Lawrence Somer Distribution of residues of certain second-order linear recurrences modulo p. III, Applications of Fibonacci numbers, Vol. 6 (Pullman, WA, 1994), Kluwer Academic Publishers, 1996, pp. 451-471 | DOI | MR | Zbl

[20] C. L. Stewart On divisors of Fermat, Fibonacci, Lucas, and Lehmer numbers, Proc. Lond. Math. Soc., Volume 35 (1977) no. 3, pp. 425-447 | DOI | MR | Zbl

[21] T. Vijayaraghavan On the fractional parts of the powers of a number. I, J. Lond. Math. Soc., Volume 15 (1940), pp. 159-160 | DOI | MR | Zbl

[22] Morgan Ward The intrinsic divisors of Lehmer numbers, Ann. Math., Volume 62 (1955), pp. 230-236 | DOI | MR | Zbl

[23] Toufik Zaïmi An arithmetical property of powers of Salem numbers, J. Number Theory, Volume 120 (2006) no. 1, pp. 179-191 | DOI | MR | Zbl

[24] Toufik Zaïmi; Mounia Selatnia; Hanifa Zekraoui Comments on the fractional parts of Pisot numbers, Arch. Math., Brno, Volume 51 (2015) no. 3, pp. 153-161 | DOI | MR | Zbl

Cité par Sources :

Commentaires - Politique