[Sur le nombre de résidus de certaines récurrences linéaires du second ordre]
Pour chaque polynôme monique avec , soit l’ensemble de toutes les récurrences linéaires avec des valeurs dans et un polynôme caractéristique , et soit
où est le nombre de résidus distincts de modulo .
Dubickas et Novikas ont prouvé que . Nous généralisons ce résultat en montrant que pour tout entier non nul . Comme corollaire, nous déduisons que pour tous les entiers et , il existe tel que la séquence des parties fractionnaires , où , a exactement points de limite. Nos preuves sont constructives et utilisent certains résultats sur l’existence de diviseurs primitifs spéciaux de certaines séquences de Lehmer.
For every monic polynomial with , let be the set of all linear recurrences with values in and characteristic polynomial , and let
where is the number of distinct residues of modulo .
Dubickas and Novikas proved that . We generalize this result by showing that for every nonzero integer . As a corollary, we deduce that for all integers and there exists such that the sequence of fractional parts , where , has exactly limit points. Our proofs are constructive and employ some results on the existence of special primitive divisors of certain Lehmer sequences.
Révisé le :
Accepté le :
Publié le :
Keywords: Fractional parts of powers, Lehmer sequences, linear recurrences, Pisot numbers, primitive divisors, residues
Mot clés : Parties fractionnaires des puissances, suites de Lehmer, récurrences linéaires, nombres de Pisot, diviseurs primitifs, résidus
Federico Accossato 1 ; Carlo Sanna 1
@article{CRMATH_2024__362_G11_1365_0, author = {Federico Accossato and Carlo Sanna}, title = {On the number of residues of certain second-order linear recurrences}, journal = {Comptes Rendus. Math\'ematique}, pages = {1365--1377}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.647}, language = {en}, }
TY - JOUR AU - Federico Accossato AU - Carlo Sanna TI - On the number of residues of certain second-order linear recurrences JO - Comptes Rendus. Mathématique PY - 2024 SP - 1365 EP - 1377 VL - 362 PB - Académie des sciences, Paris DO - 10.5802/crmath.647 LA - en ID - CRMATH_2024__362_G11_1365_0 ER -
Federico Accossato; Carlo Sanna. On the number of residues of certain second-order linear recurrences. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1365-1377. doi : 10.5802/crmath.647. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.647/
[1] On moduli for which the Lucas numbers contain a complete residue system, Fibonacci Q., Volume 51 (2013) no. 2, pp. 151-152 | DOI | MR | Zbl
[2] Existence of primitive divisors of Lucas and Lehmer numbers. With an appendix by M. Mignotte, J. Reine Angew. Math., Volume 539 (2001), pp. 75-122 | DOI | MR | Zbl
[3] A distribution property for linear recurrence of the second order, Proc. Am. Math. Soc., Volume 50 (1975), pp. 101-106 | DOI | MR | Zbl
[4] On moduli for which the Fibonacci sequence contains a complete system of residues, Fibonacci Q., Volume 9 (1971) no. 5, pp. 497-504 | DOI | MR | Zbl
[5] Linear recurrence sequences without zeros, Czech. Math. J., Volume 64(139) (2014) no. 3, pp. 857-865 | DOI | MR | Zbl
[6] Recurrence with prescribed number of residues, J. Number Theory, Volume 215 (2020), pp. 120-137 | DOI | MR | Zbl
[7] There are infinitely many limit points of the fractional parts of powers, Proc. Indian Acad. Sci., Math. Sci., Volume 115 (2005) no. 4, pp. 391-397 | DOI | MR | Zbl
[8] Arithmetical properties of powers of algebraic numbers, Bull. Lond. Math. Soc., Volume 38 (2006) no. 1, pp. 70-80 | DOI | MR | Zbl
[9] On the limit points of the fractional parts of powers of Pisot numbers, Arch. Math., Brno, Volume 42 (2006) no. 2, pp. 151-158 | MR | Zbl
[10] Recurrence sequences, Mathematical Surveys and Monographs, 104, American Mathematical Society, 2003, xiv+318 pages | DOI | MR | Zbl
[11] Uniform distribution of linear recurring sequences modulo prime powers, Finite Fields Appl., Volume 10 (2004) no. 1, pp. 1-23 | DOI | MR | Zbl
[12] The distribution of Fibonacci numbers modulo primes, Am. Math. Mon., Volume 129 (2022) no. 1, pp. 75-79 | DOI | MR | Zbl
[13] Maximal frequencies of elements in second-order linear recurring sequences over a finite field, Elem. Math., Volume 46 (1991) no. 5, pp. 139-143 | MR | Zbl
[14] Répartition des puissances successives des nombres réels, Comment. Math. Helv., Volume 19 (1946), pp. 153-160 | DOI | MR | Zbl
[15] On the number of residues of linear recurrences, Res. Number Theory, Volume 8 (2022) no. 1, 7, 10 pages | DOI | MR | Zbl
[16] Special Lucas sequences, including the Fibonacci sequence, modulo a prime, A tribute to Paul Erdős, Cambridge University Press, 1990, pp. 349-357 | DOI | MR | Zbl
[17] On moduli for which certain second-order linear recurrences contain a complete system of residues modulo , Fibonacci Q., Volume 55 (2017) no. 3, pp. 209-228 | DOI | MR | Zbl
[18] Primes having an incomplete system of residues for a class of second-order recurrences, Applications of Fibonacci numbers (San Jose, CA, 1986), Kluwer Academic Publishers, 1988, pp. 113-141 | DOI | MR | Zbl
[19] Distribution of residues of certain second-order linear recurrences modulo . III, Applications of Fibonacci numbers, Vol. 6 (Pullman, WA, 1994), Kluwer Academic Publishers, 1996, pp. 451-471 | DOI | MR | Zbl
[20] On divisors of Fermat, Fibonacci, Lucas, and Lehmer numbers, Proc. Lond. Math. Soc., Volume 35 (1977) no. 3, pp. 425-447 | DOI | MR | Zbl
[21] On the fractional parts of the powers of a number. I, J. Lond. Math. Soc., Volume 15 (1940), pp. 159-160 | DOI | MR | Zbl
[22] The intrinsic divisors of Lehmer numbers, Ann. Math., Volume 62 (1955), pp. 230-236 | DOI | MR | Zbl
[23] An arithmetical property of powers of Salem numbers, J. Number Theory, Volume 120 (2006) no. 1, pp. 179-191 | DOI | MR | Zbl
[24] Comments on the fractional parts of Pisot numbers, Arch. Math., Brno, Volume 51 (2015) no. 3, pp. 153-161 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique