[Symédianes comme barycentres hyperboliques]
Le point symédiane d’un triangle possède plusieurs propriétés géométriques d’optimalité, qui peuvent servir à la définir. Nous développons une nouvelle définition dynamique du point symédiane, qui se généralise naturellement à d’autres polygones idéaux hyperboliques, au-delà des triangles. Nous prouvons que, de manière générale, ce point satisfait toujours des propriétés géométriques d’optimalité analogues à celles du point symédiane, qui en font un barycentre hyperbolique. Nous entamons une étude des espaces de modules des polygones idéaux dont le barycentre hyperbolique est fixe, ainsi que de certaines propriétés d’optimalité supplémentaires pour les polygones idéaux harmoniques (et suffisamment réguliers).
The symmedian point of a triangle enjoys several geometric and optimality properties, which also serve to define it. We develop a new dynamical coordinatization of the symmedian, which naturally generalizes to other ideal hyperbolic polygons beyond triangles. We prove that in general this point still satisfies analogous geometric and optimality properties to those of the symmedian, making it into a hyperbolic barycenter. We initiate a study of moduli spaces of ideal polygons with fixed hyperbolic barycenter, and of some additional optimality properties of this point for harmonic (and sufficiently regular) ideal polygons.
Révisé le :
Accepté le :
Publié le :
Keywords: symmedian point, Hyperbolic barycenter, harmonic polygon, ideal hyperbolic polygon
Mots-clés : Barycentre hyperbolique, polygone harmonique, polygone hyperbolique idéal
Maxim Arnold 1 ; Carlos E. Arreche 1
@article{CRMATH_2024__362_G12_1743_0, author = {Maxim Arnold and Carlos E. Arreche}, title = {Symmedians as {Hyperbolic} {Barycenters}}, journal = {Comptes Rendus. Math\'ematique}, pages = {1743--1762}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.677}, language = {en}, }
Maxim Arnold; Carlos E. Arreche. Symmedians as Hyperbolic Barycenters. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1743-1762. doi : 10.5802/crmath.677. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.677/
[1] Cross-ratio dynamics on ideal polygons, Int. Math. Res. Not., Volume 2022 (2022) no. 9, pp. 6770-6853 | DOI | MR | Zbl
[2] The limit point of the pentagram map and infinitesimal monodromy, Int. Math. Res. Not., Volume 2022 (2022) no. 7, pp. 5383-5397 | DOI | MR | Zbl
[3] On some classical constructions extended to hyperbolic geometry, Mat. Prosvesh., Volume 3 (2009) no. 13, pp. 155-170
[4] Geometry in figures, CreateSpace Independent Publishing Platform, 2017
[5] An algebraic method to find the symmedian point of a triangle, Math. Mag., Volume 89 (2016) no. 3, pp. 197-200 | DOI | MR | Zbl
[6] Supplementary chapter, A Sequel to the First Six Books of the Elements of Euclid, Hodges, Figgis, & Co., 1888, pp. 165-222
[7] The real projective plane, Springer, 1993, xiv+222 pages | MR | Zbl
[8] Poncelet porisms and beyond. Integrable billiards, hyperelliptic Jacobians and pencils of quadrics, Frontiers in Mathematics, Birkhäuser/Springer, 2011, viii+293 pages | DOI | MR | Zbl
[9] A hyperbolic view of the seven circles theorem, Math. Intell., Volume 42 (2020) no. 2, pp. 61-65 | DOI | MR | Zbl
[10] The limit point of the pentagram map, Int. Math. Res. Not., Volume 2020 (2020) no. 9, pp. 2818-2831 | DOI | MR | Zbl
[11] New properties of harmonic polygons, J. Geom. Graph., Volume 26 (2022) no. 2, pp. 217-236 | MR | Zbl
[12] Episodes in nineteenth and twentieth century Euclidean geometry, New Mathematical Library, 37, Mathematical Association of America, 1995, xiv+174 pages | DOI | MR | Zbl
[13] Characterizing centers of convex bodies via optimization, J. Math. Anal. Appl., Volume 184 (1994) no. 3, pp. 533-559 | DOI | MR | Zbl
[14] Early History of the Symmedian Point, Proc. Edinb. Math. Soc., Volume 11 (1892), pp. 92-103 | DOI | Zbl
[15] Hyperbolic geometry on a hyperboloid, Am. Math. Mon., Volume 100 (1993) no. 5, pp. 442-455 | DOI | MR | Zbl
[16] The pentagram map, Exp. Math., Volume 1 (1992) no. 1, pp. 71-81 | MR | Zbl
[17] A new Method for the Investigation of Harmonic Polygons, Proc. Lond. Math. Soc., Volume 18 (1886), pp. 289-304 | DOI | MR
[18] Sur les polygones et les polyèdres harmoniques, Association Française pour l’Avancement des Sciences, Compte Rendu de la 15e Session - Nancy 1886(Seconde Partie – Notes et Mémoires), 1887, pp. 12-24
[19] On the discrete bicycle transformation, Publ. Mat. Urug., Volume 14 (2013), pp. 201-219 | MR | Zbl
[20] Circumcenter of mass and generalized Euler line, Discrete Comput. Geom., Volume 51 (2014) no. 4, pp. 815-836 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique