Comptes Rendus
Article de recherche - Géométrie et Topologie
Symmedians as Hyperbolic Barycenters
[Symédianes comme barycentres hyperboliques]
Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1743-1762.

Le point symédiane d’un triangle possède plusieurs propriétés géométriques d’optimalité, qui peuvent servir à la définir. Nous développons une nouvelle définition dynamique du point symédiane, qui se généralise naturellement à d’autres polygones idéaux hyperboliques, au-delà des triangles. Nous prouvons que, de manière générale, ce point satisfait toujours des propriétés géométriques d’optimalité analogues à celles du point symédiane, qui en font un barycentre hyperbolique. Nous entamons une étude des espaces de modules des polygones idéaux dont le barycentre hyperbolique est fixe, ainsi que de certaines propriétés d’optimalité supplémentaires pour les polygones idéaux harmoniques (et suffisamment réguliers).

The symmedian point of a triangle enjoys several geometric and optimality properties, which also serve to define it. We develop a new dynamical coordinatization of the symmedian, which naturally generalizes to other ideal hyperbolic polygons beyond triangles. We prove that in general this point still satisfies analogous geometric and optimality properties to those of the symmedian, making it into a hyperbolic barycenter. We initiate a study of moduli spaces of ideal polygons with fixed hyperbolic barycenter, and of some additional optimality properties of this point for harmonic (and sufficiently regular) ideal polygons.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.677
Classification : 51M15, 52C30, 51A45, 53A70
Keywords: symmedian point, Hyperbolic barycenter, harmonic polygon, ideal hyperbolic polygon
Mots-clés : Barycentre hyperbolique, polygone harmonique, polygone hyperbolique idéal

Maxim Arnold 1 ; Carlos E. Arreche 1

1 Department of Mathematical Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2024__362_G12_1743_0,
     author = {Maxim Arnold and Carlos E. Arreche},
     title = {Symmedians as {Hyperbolic} {Barycenters}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1743--1762},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {362},
     year = {2024},
     doi = {10.5802/crmath.677},
     language = {en},
}
TY  - JOUR
AU  - Maxim Arnold
AU  - Carlos E. Arreche
TI  - Symmedians as Hyperbolic Barycenters
JO  - Comptes Rendus. Mathématique
PY  - 2024
SP  - 1743
EP  - 1762
VL  - 362
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.677
LA  - en
ID  - CRMATH_2024__362_G12_1743_0
ER  - 
%0 Journal Article
%A Maxim Arnold
%A Carlos E. Arreche
%T Symmedians as Hyperbolic Barycenters
%J Comptes Rendus. Mathématique
%D 2024
%P 1743-1762
%V 362
%I Académie des sciences, Paris
%R 10.5802/crmath.677
%G en
%F CRMATH_2024__362_G12_1743_0
Maxim Arnold; Carlos E. Arreche. Symmedians as Hyperbolic Barycenters. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1743-1762. doi : 10.5802/crmath.677. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.677/

[1] Maxim Arnold; Dmitry Fuchs; Ivan Izmestiev; Serge Tabachnikov Cross-ratio dynamics on ideal polygons, Int. Math. Res. Not., Volume 2022 (2022) no. 9, pp. 6770-6853 | DOI | MR | Zbl

[2] Quinton Aboud; Anton Izosimov The limit point of the pentagram map and infinitesimal monodromy, Int. Math. Res. Not., Volume 2022 (2022) no. 7, pp. 5383-5397 | DOI | MR | Zbl

[3] A. V. Akopyan On some classical constructions extended to hyperbolic geometry, Mat. Prosvesh., Volume 3 (2009) no. 13, pp. 155-170

[4] A. V. Akopyan Geometry in figures, CreateSpace Independent Publishing Platform, 2017

[5] M. Bani-Yaghoub; Noah H. Rhee; Jawad Sadek An algebraic method to find the symmedian point of a triangle, Math. Mag., Volume 89 (2016) no. 3, pp. 197-200 | DOI | MR | Zbl

[6] J. Casey Supplementary chapter, A Sequel to the First Six Books of the Elements of Euclid, Hodges, Figgis, & Co., 1888, pp. 165-222

[7] H. S. M. Coxeter The real projective plane, Springer, 1993, xiv+222 pages | MR | Zbl

[8] Vladimir Dragović; Milena Radnović Poncelet porisms and beyond. Integrable billiards, hyperelliptic Jacobians and pencils of quadrics, Frontiers in Mathematics, Birkhäuser/Springer, 2011, viii+293 pages | DOI | MR | Zbl

[9] Kostiantyn Drach; Richard E. Schwartz A hyperbolic view of the seven circles theorem, Math. Intell., Volume 42 (2020) no. 2, pp. 61-65 | DOI | MR | Zbl

[10] Max Glick The limit point of the pentagram map, Int. Math. Res. Not., Volume 2020 (2020) no. 9, pp. 2818-2831 | DOI | MR | Zbl

[11] Ronaldo Alves Garcia; Dan Reznik; Pedro Roitman New properties of harmonic polygons, J. Geom. Graph., Volume 26 (2022) no. 2, pp. 217-236 | MR | Zbl

[12] Ross Honsberger Episodes in nineteenth and twentieth century Euclidean geometry, New Mathematical Library, 37, Mathematical Association of America, 1995, xiv+174 pages | DOI | MR | Zbl

[13] M. J. Kaiser; T. L. Morin Characterizing centers of convex bodies via optimization, J. Math. Anal. Appl., Volume 184 (1994) no. 3, pp. 533-559 | DOI | MR | Zbl

[14] John Sturgeon Mackay Early History of the Symmedian Point, Proc. Edinb. Math. Soc., Volume 11 (1892), pp. 92-103 | DOI | Zbl

[15] William F. Reynolds Hyperbolic geometry on a hyperboloid, Am. Math. Mon., Volume 100 (1993) no. 5, pp. 442-455 | DOI | MR | Zbl

[16] Richard E. Schwartz The pentagram map, Exp. Math., Volume 1 (1992) no. 1, pp. 71-81 | MR | Zbl

[17] T. C. Simmons A new Method for the Investigation of Harmonic Polygons, Proc. Lond. Math. Soc., Volume 18 (1886), pp. 289-304 | DOI | MR

[18] G. Tarry; J. Neuberg Sur les polygones et les polyèdres harmoniques, Association Française pour l’Avancement des Sciences, Compte Rendu de la 15e Session - Nancy 1886(Seconde Partie – Notes et Mémoires), 1887, pp. 12-24

[19] Serge Tabachnikov; Emmanuel Tsukerman On the discrete bicycle transformation, Publ. Mat. Urug., Volume 14 (2013), pp. 201-219 | MR | Zbl

[20] Serge Tabachnikov; Emmanuel Tsukerman Circumcenter of mass and generalized Euler line, Discrete Comput. Geom., Volume 51 (2014) no. 4, pp. 815-836 | DOI | MR | Zbl

Cité par Sources :

Commentaires - Politique