Comptes Rendus
Article de recherche - Géométrie algébrique
A non-vanishing conjecture for cotangent bundles on elliptic surfaces
[Une conjecture de non-annulation pour les fibrés cotangents sur les surfaces elliptiques]
Comptes Rendus. Mathématique, Volume 363 (2025), pp. 487-497.

In this paper, we prove the non-vanishing conjecture for cotangent bundles on isotrivial elliptic surfaces. Combined with the result by Höring and Peternell, it completely solves the question for surfaces with Kodaira dimension at most 1.

Dans cet article, nous prouvons la conjecture de non-annulation pour les fibrés cotangents sur les surfaces elliptiques isotriviales. Combiné avec le résultat de Höring et Peternell, cela résout complètement la question pour les surfaces de dimension de Kodaira au plus 1.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.721
Classification : 14E05, 14J27
Keywords: Non-vanishing conjecture, symmetric differential, elliptic surface
Mots-clés : Conjecture de non-annulation, différentielle symétrique, surface elliptique

Haesong Seo 1

1 Department of Mathematical Sciences, KAIST, 291 Daehak-ro, Yuseong-gu, Deajeon, 34141, Republic of Korea
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2025__363_G5_487_0,
     author = {Haesong Seo},
     title = {A non-vanishing conjecture for cotangent bundles on elliptic surfaces},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {487--497},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {363},
     year = {2025},
     doi = {10.5802/crmath.721},
     language = {en},
}
TY  - JOUR
AU  - Haesong Seo
TI  - A non-vanishing conjecture for cotangent bundles on elliptic surfaces
JO  - Comptes Rendus. Mathématique
PY  - 2025
SP  - 487
EP  - 497
VL  - 363
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.721
LA  - en
ID  - CRMATH_2025__363_G5_487_0
ER  - 
%0 Journal Article
%A Haesong Seo
%T A non-vanishing conjecture for cotangent bundles on elliptic surfaces
%J Comptes Rendus. Mathématique
%D 2025
%P 487-497
%V 363
%I Académie des sciences, Paris
%R 10.5802/crmath.721
%G en
%F CRMATH_2025__363_G5_487_0
Haesong Seo. A non-vanishing conjecture for cotangent bundles on elliptic surfaces. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 487-497. doi : 10.5802/crmath.721. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.721/

[1] Yohannes D. Asega; Bruno De Oliveira; Michael L. Weiss Surface quotient singularities and bigness of the cotangent bundle: Part II, Eur. J. Math., Volume 11 (2025) no. 2, 21, 31 pages | DOI | MR | Zbl

[2] Lucian Bădescu Algebraic surfaces, Universitext, Springer, 2001, xii+258 pages | DOI | MR

[3] Wolf P. Barth; Klaus Hulek; Chris A. M. Peters; Antonius Van de Ven Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 4, Springer, 2004, xii+436 pages | DOI | MR

[4] Nils Bruin; Jordan Thomas; Anthony Várilly-Alvarado Explicit computation of symmetric differentials and its application to quasihyperbolicity, Algebra Number Theory, Volume 16 (2022) no. 6, pp. 1377-1405 | DOI | MR | Zbl

[5] Junyan Cao; Andreas Höring Direct images of pseudoeffective cotangent bundles, Pure Appl. Math. Q., Volume 21 (2025) no. 3, pp. 971-1013 | DOI | MR | Zbl

[6] Hershel M. Farkas; Irwin Kra Riemann surfaces, Graduate Texts in Mathematics, 71, Springer, 1992, xvi+363 pages | DOI | MR

[7] Robin Hartshorne Algebraic geometry, Graduate Texts in Mathematics, 52, Springer, 1977, xvi+496 pages | DOI | MR

[8] Andreas Höring; Jie Liu; Feng Shao Examples of Fano manifolds with non-pseudoeffective tangent bundle, J. Lond. Math. Soc. (2), Volume 106 (2022) no. 1, pp. 27-59 | DOI | MR | Zbl

[9] Andreas Höring; Thomas Peternell A nonvanishing conjecture for cotangent bundles, Ann. Fac. Sci. Toulouse, Math. (6), Volume 32 (2023) no. 5, pp. 855-892 | DOI | MR | Zbl

[10] Andreas Höring; Thomas Peternell Stein complements in compact Kähler manifolds, Math. Ann., Volume 390 (2024) no. 2, pp. 2075-2111 | DOI | MR | Zbl

[11] Jia Jia; Yongnam Lee; Guolei Zhong Smooth projective surfaces with pseudo-effective tangent bundles, J. Math. Soc. Japan, Volume 77 (2025) no. 1, pp. 75-102 | DOI | MR | Zbl

[12] Kunihiko Kodaira On compact analytic surfaces. II, III, Ann. Math. (2), Volume 77-78 (1963), p. 563-626 and 1–40 | DOI | MR | Zbl

[13] Yuri G. Prokhorov; Constantin A. Shramov Bounded automorphism groups of compact complex surfaces, Mat. Sb., Volume 211 (2020) no. 9, pp. 105-118 | DOI | MR

[14] Fumio Sakai Symmetric powers of the cotangent bundle and classification of algebraic varieties, Algebraic geometry (Proc. Summer Meeting, Univ. Copenhagen, Copenhagen, 1978) (Lecture Notes in Mathematics), Volume 732, Springer, 1979, pp. 545-563 | DOI | MR | Zbl

[15] Fernando Serrano Isotrivial fibred surfaces, Ann. Mat. Pura Appl. (4), Volume 171 (1996), pp. 63-81 | DOI | MR | Zbl

Cité par Sources :

Commentaires - Politique