[Une conjecture de non-annulation pour les fibrés cotangents sur les surfaces elliptiques]
In this paper, we prove the non-vanishing conjecture for cotangent bundles on isotrivial elliptic surfaces. Combined with the result by Höring and Peternell, it completely solves the question for surfaces with Kodaira dimension at most
Dans cet article, nous prouvons la conjecture de non-annulation pour les fibrés cotangents sur les surfaces elliptiques isotriviales. Combiné avec le résultat de Höring et Peternell, cela résout complètement la question pour les surfaces de dimension de Kodaira au plus
Révisé le :
Accepté le :
Publié le :
Keywords: Non-vanishing conjecture, symmetric differential, elliptic surface
Mots-clés : Conjecture de non-annulation, différentielle symétrique, surface elliptique
Haesong Seo 1

@article{CRMATH_2025__363_G5_487_0, author = {Haesong Seo}, title = {A non-vanishing conjecture for cotangent bundles on elliptic surfaces}, journal = {Comptes Rendus. Math\'ematique}, pages = {487--497}, publisher = {Acad\'emie des sciences, Paris}, volume = {363}, year = {2025}, doi = {10.5802/crmath.721}, language = {en}, }
Haesong Seo. A non-vanishing conjecture for cotangent bundles on elliptic surfaces. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 487-497. doi : 10.5802/crmath.721. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.721/
[1] Surface quotient singularities and bigness of the cotangent bundle: Part II, Eur. J. Math., Volume 11 (2025) no. 2, 21, 31 pages | DOI | MR | Zbl
[2] Algebraic surfaces, Universitext, Springer, 2001, xii+258 pages | DOI | MR
[3] Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 4, Springer, 2004, xii+436 pages | DOI | MR
[4] Explicit computation of symmetric differentials and its application to quasihyperbolicity, Algebra Number Theory, Volume 16 (2022) no. 6, pp. 1377-1405 | DOI | MR | Zbl
[5] Direct images of pseudoeffective cotangent bundles, Pure Appl. Math. Q., Volume 21 (2025) no. 3, pp. 971-1013 | DOI | MR | Zbl
[6] Riemann surfaces, Graduate Texts in Mathematics, 71, Springer, 1992, xvi+363 pages | DOI | MR
[7] Algebraic geometry, Graduate Texts in Mathematics, 52, Springer, 1977, xvi+496 pages | DOI | MR
[8] Examples of Fano manifolds with non-pseudoeffective tangent bundle, J. Lond. Math. Soc. (2), Volume 106 (2022) no. 1, pp. 27-59 | DOI | MR | Zbl
[9] A nonvanishing conjecture for cotangent bundles, Ann. Fac. Sci. Toulouse, Math. (6), Volume 32 (2023) no. 5, pp. 855-892 | DOI | MR | Zbl
[10] Stein complements in compact Kähler manifolds, Math. Ann., Volume 390 (2024) no. 2, pp. 2075-2111 | DOI | MR | Zbl
[11] Smooth projective surfaces with pseudo-effective tangent bundles, J. Math. Soc. Japan, Volume 77 (2025) no. 1, pp. 75-102 | DOI | MR | Zbl
[12] On compact analytic surfaces. II, III, Ann. Math. (2), Volume 77-78 (1963), p. 563-626 and 1–40 | DOI | MR | Zbl
[13] Bounded automorphism groups of compact complex surfaces, Mat. Sb., Volume 211 (2020) no. 9, pp. 105-118 | DOI | MR
[14] Symmetric powers of the cotangent bundle and classification of algebraic varieties, Algebraic geometry (Proc. Summer Meeting, Univ. Copenhagen, Copenhagen, 1978) (Lecture Notes in Mathematics), Volume 732, Springer, 1979, pp. 545-563 | DOI | MR | Zbl
[15] Isotrivial fibred surfaces, Ann. Mat. Pura Appl. (4), Volume 171 (1996), pp. 63-81 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique