[Intégrabilité au sens de Frobenius pour certaines p-formes sur des espaces singuliers]
Demailly a montré que la distribution définie par une p-forme holomorphe à valeurs dans un fibré en droites est toujours intégrable si la variété est kählerienne compacte et le dual du fibré en droites est pseudoeffectif. Nous généralisons son résultat à des espaces kähleriennes compactes à singularités klt.
Demailly proved that on a smooth compact Kähler manifold the distribution defined by a holomorphic -form with values in an anti-pseudoeffective line bundle is always integrable. We generalise his result to compact Kähler spaces with klt singularities.
Accepté le :
Publié le :
Keywords: holomorphic $p$-forms, klt spaces, foliations
Mot clés : $p$-forme holomorphe, espace à singularités klt, feuilletages
Junyan Cao 1 ; Andreas Höring 1
@article{CRMATH_2024__362_S1_43_0, author = {Junyan Cao and Andreas H\"oring}, title = {Frobenius integrability of certain $p$-forms on singular spaces}, journal = {Comptes Rendus. Math\'ematique}, pages = {43--54}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, number = {S1}, year = {2024}, doi = {10.5802/crmath.582}, language = {en}, }
Junyan Cao; Andreas Höring. Frobenius integrability of certain $p$-forms on singular spaces. Comptes Rendus. Mathématique, Volume 362 (2024) no. S1, pp. 43-54. doi : 10.5802/crmath.582. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.582/
[1] Contact singularities, Manuscr. Math., Volume 108 (2002) no. 4, pp. 529-541 | DOI | MR | Zbl
[2] MMP for co-rank one foliations on threefolds, Invent. Math., Volume 225 (2021) no. 2, pp. 603-690 | DOI | MR | Zbl
[3] On the Frobenius integrability of certain holomorphic -forms, Complex geometry (Göttingen, 2000), Springer, 2002, pp. 93-98 | DOI | MR | Zbl
[4] Analytic methods in algebraic geometry, Surveys of Modern Mathematics, 1, International Press; Higher Education Press, 2012, viii+231 pages | MR
[5] Codimension foliations with numerically trivial canonical class on singular spaces, Duke Math. J., Volume 170 (2021) no. 1, pp. 95-203 | DOI | MR | Zbl
[6] An optimal extension theorem for 1-forms and the Lipman-Zariski conjecture, Doc. Math., Volume 19 (2014), pp. 815-830 | DOI | MR | Zbl
[7] Differential forms on log canonical spaces, Publ. Math., Inst. Hautes Étud. Sci. (2011) no. 114, pp. 87-169 | DOI | Numdam | MR | Zbl
[8] Reflexive differential forms on singular spaces. Geometry and cohomology, J. Reine Angew. Math., Volume 697 (2014), pp. 57-89 | DOI | MR | Zbl
[9] Projectively flat klt varieties, J. Éc. Polytech., Math., Volume 8 (2021), pp. 1005-1036 | DOI | Numdam | MR | Zbl
[10] Bogomolov-Sommese vanishing on log canonical pairs, J. Reine Angew. Math., Volume 702 (2015), pp. 109-142 | DOI | MR | Zbl
[11] Algebraic geometry, Graduate Texts in Mathematics, 52, Springer, 1977, xvi+496 pages | DOI | MR
[12] Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, 134, Cambridge University Press, 1998, viii+254 pages (with the collaboration of C. H. Clemens and A. Corti) | DOI | MR
[13] Extending holomorphic forms from the regular locus of a complex space to a resolution of singularities, J. Am. Math. Soc., Volume 34 (2021) no. 2, pp. 315-368 | DOI | MR | Zbl
[14] Singular foliations with trivial canonical class, Invent. Math., Volume 213 (2018) no. 3, pp. 1327-1380 | DOI | MR | Zbl
[15] A short analytic proof of closedness of logarithmic forms, Kodai Math. J., Volume 18 (1995) no. 2, pp. 295-299 | DOI | MR | Zbl
[16] Singular rationally connected surfaces with nonzero pluri-forms, Mich. Math. J., Volume 63 (2014) no. 4, pp. 725-745 | DOI | MR | Zbl
[17] Foliations with vanishing Chern classes, Bull. Braz. Math. Soc. (N.S.), Volume 44 (2013) no. 4, pp. 731-754 | DOI | MR | Zbl
[18] On the structure of codimension 1 foliations with pseudoeffective conormal bundle, Foliation theory in algebraic geometry. Proceedings of the conference, New York, NY, USA, September 3–7, 2013, Springer, 2016, pp. 157-216 | DOI | MR | Zbl
[19] Singular contact varieties (2022) (https://arxiv.org/abs/2212.07930)
Cité par Sources :
Commentaires - Politique