[Multi-solitons pour le système de Zakharov en une dimension]
Étant données différentes vitesses
Given different speeds
Révisé le :
Accepté le :
Publié le :
Keywords: Zakharov system, multi-solitary waves, asymptotic behaviour
Mots-clés : Système de Zakharov, multi-solitons, comportement asymptotique
Guillaume Rialland 1

@article{CRMATH_2025__363_G3_283_0, author = {Guillaume Rialland}, title = {Multi-solitary waves for the one-dimensional {Zakharov} system}, journal = {Comptes Rendus. Math\'ematique}, pages = {283--321}, publisher = {Acad\'emie des sciences, Paris}, volume = {363}, year = {2025}, doi = {10.5802/crmath.732}, language = {en}, }
Guillaume Rialland. Multi-solitary waves for the one-dimensional Zakharov system. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 283-321. doi : 10.5802/crmath.732. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.732/
[1] On the 2D Zakharov system with
[2] New bounds on the high Sobolev norms of the 1d NLS solutions (2024) | arXiv
[3] On wellposedness of the Zakharov system, Int. Math. Res. Not., Volume 1996 (1996) no. 11, pp. 515-546 | DOI | MR | Zbl
[4] Spectra of linearized operators for NLS solitary waves, SIAM J. Math. Anal., Volume 39 (2007) no. 4, pp. 1070-1111 | DOI | MR | Zbl
[5] Construction of multibubble solutions for the critical GKDV equation, SIAM J. Math. Anal., Volume 50 (2018) no. 4, pp. 3715-3790 | DOI | MR | Zbl
[6] On smoothness and uniqueness of multi-solitons of the non-linear Schrödinger equations, Commun. Partial Differ. Equations, Volume 46 (2021) no. 12, pp. 2325-2385 | DOI | MR | Zbl
[7] High-speed excited multi-solitons in nonlinear Schrödinger equations, J. Math. Pures Appl. (9), Volume 96 (2011) no. 2, pp. 135-166 | DOI | MR | Zbl
[8] Construction of multi-soliton solutions for the
[9] Multi-solitons for nonlinear Klein–Gordon equations, Forum Math. Sigma, Volume 2 (2014), e15, 38 pages | DOI | MR | Zbl
[10] On the theory of Langmuir solitons, J. Plasma Phys., Volume 17 (1977) no. 2, pp. 153-170 | DOI
[11] On the Cauchy problem for the Zakharov system, J. Funct. Anal., Volume 151 (1997) no. 2, pp. 384-436 | DOI | MR | Zbl
[12] Multi-solitons for the nonlinear Schrödinger equation with repulsive Dirac delta potential (2023) | arXiv
[13] On the Cauchy problem for the (generalized) Korteweg–de Vries equation, Studies in applied mathematics (Advances in Mathematics, Supplementary Studies), Volume 8, Academic Press Inc., 1983, pp. 93-128 | MR | Zbl
[14] Dynamics of solitons in nearly integrable systems, Rev. Mod. Phys., Volume 61 (1989) no. 4, pp. 763-915 | DOI
[15] Fast-moving finite and infinite trains of solitons for nonlinear Schrödinger equations, Proc. R. Soc. Edinb., Sect. A, Math., Volume 145 (2015) no. 6, pp. 1251-1282 | DOI | MR | Zbl
[16] Finite and infinite soliton and kink-soliton trains of nonlinear Schrödinger equations, Proceedings of the Sixth International Congress of Chinese Mathematicians. Vol. I (Advanced Lectures in Mathematics), Volume 36, International Press, 2017, pp. 43-56 | MR | Zbl
[17] Asymptotic
[18] Instability of solitons for the critical generalized Korteweg–de Vries equation, Geom. Funct. Anal., Volume 11 (2001) no. 1, pp. 74-123 | DOI | MR
[19] Multi solitary waves for nonlinear Schrödinger equations, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 23 (2006) no. 6, pp. 849-864 | DOI | Numdam | MR | Zbl
[20] Stability in
[21] On the decay problem for the Zakharov and Klein–Gordon–Zakharov systems in one dimension, J. Evol. Equ., Volume 21 (2021) no. 4, pp. 3733-3763 | DOI | MR | Zbl
[22] Construction of solutions with exactly
[23] Blow-up results of virial type for Zakharov equations, Commun. Math. Phys., Volume 175 (1996) no. 2, pp. 433-455 | DOI | MR | Zbl
[24] Stability of solitary waves for the Zakharov equations in one space dimension, RIMS Kokyuroku, Volume 908 (1995), pp. 148-158 | MR | Zbl
[25] Local well-posedness for the Zakharov system in dimension
[26] The nonlinear Schrödinger equation. Self-focusing and wave collapse, Applied Mathematical Sciences, 139, Springer, 1999, xvi+350 pages | MR
[27] Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal., Volume 16 (1985) no. 3, pp. 472-491 | DOI | MR | Zbl
[28] Orbital stability of solitary waves of Zakharov system, J. Math. Phys., Volume 35 (1994) no. 5, pp. 2413-2422 | DOI | MR | Zbl
[29] Collapse of Langmuir waves, Sov. Phys. JETP, Volume 35 (1972) no. 5, pp. 908-914
Cité par Sources :
Commentaires - Politique