Comptes Rendus
Article de recherche - Équations aux dérivées partielles
Multi-solitary waves for the one-dimensional Zakharov system
[Multi-solitons pour le système de Zakharov en une dimension]
Comptes Rendus. Mathématique, Volume 363 (2025), pp. 283-321.

Étant données différentes vitesses c1,,cK, nous établissons dans ce papier l’existence d’une solution au système de Zakharov en dimension 1 se comportant asymptotiquement comme un K-soliton, chaque soliton voyageant à vitesse ck. La preuve est adaptée de précédents résultats pour les équations NLS et gKdV.

Given different speeds c1,,cK, in the present paper we establish the existence of a solution to the Zakharov system in dimension 1 that behaves asymptotically like a K-solitary wave, each wave travelling with speed ck. The proof is adapted from previous results for the NLS and gKdV equations.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.732
Classification : 37K40, 35Q51, 35Q55
Keywords: Zakharov system, multi-solitary waves, asymptotic behaviour
Mots-clés : Système de Zakharov, multi-solitons, comportement asymptotique

Guillaume Rialland 1

1 Université de Paris-Saclay, UVSQ, CNRS, Laboratoire de Mathématiques de Versailles, 78000 Versailles, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2025__363_G3_283_0,
     author = {Guillaume Rialland},
     title = {Multi-solitary waves for the one-dimensional {Zakharov} system},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {283--321},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {363},
     year = {2025},
     doi = {10.5802/crmath.732},
     language = {en},
}
TY  - JOUR
AU  - Guillaume Rialland
TI  - Multi-solitary waves for the one-dimensional Zakharov system
JO  - Comptes Rendus. Mathématique
PY  - 2025
SP  - 283
EP  - 321
VL  - 363
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.732
LA  - en
ID  - CRMATH_2025__363_G3_283_0
ER  - 
%0 Journal Article
%A Guillaume Rialland
%T Multi-solitary waves for the one-dimensional Zakharov system
%J Comptes Rendus. Mathématique
%D 2025
%P 283-321
%V 363
%I Académie des sciences, Paris
%R 10.5802/crmath.732
%G en
%F CRMATH_2025__363_G3_283_0
Guillaume Rialland. Multi-solitary waves for the one-dimensional Zakharov system. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 283-321. doi : 10.5802/crmath.732. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.732/

[1] Ioan Bejenaru; Sebastian Herr; Justin Alexander Holmer; Daniel Tataru On the 2D Zakharov system with L2-Schrödinger data, Nonlinearity, Volume 22 (2009) no. 5, pp. 1063-1089 | DOI | MR | Zbl

[2] Diego Berti; Fabrice Planchon; Nikolay Tzvetkov; Nicola Visciglia New bounds on the high Sobolev norms of the 1d NLS solutions (2024) | arXiv

[3] Jean Bourgain; James E. Colliander On wellposedness of the Zakharov system, Int. Math. Res. Not., Volume 1996 (1996) no. 11, pp. 515-546 | DOI | MR | Zbl

[4] Shu-Ming Chang; Stephen Gustafson; Kenji Nakanishi; Tai-Peng Tsai Spectra of linearized operators for NLS solitary waves, SIAM J. Math. Anal., Volume 39 (2007) no. 4, pp. 1070-1111 | DOI | MR | Zbl

[5] Vianney Combet; Yvan Martel Construction of multibubble solutions for the critical GKDV equation, SIAM J. Math. Anal., Volume 50 (2018) no. 4, pp. 3715-3790 | DOI | MR | Zbl

[6] Raphaël Côte; Xavier Friederich On smoothness and uniqueness of multi-solitons of the non-linear Schrödinger equations, Commun. Partial Differ. Equations, Volume 46 (2021) no. 12, pp. 2325-2385 | DOI | MR | Zbl

[7] Raphaël Côte; Stefan Le Coz High-speed excited multi-solitons in nonlinear Schrödinger equations, J. Math. Pures Appl. (9), Volume 96 (2011) no. 2, pp. 135-166 | DOI | MR | Zbl

[8] Raphaël Côte; Yvan Martel; Frank Merle Construction of multi-soliton solutions for the L2-supercritical gKdV and NLS equations, Rev. Mat. Iberoam., Volume 27 (2011) no. 1, pp. 273-302 | DOI | MR | Zbl

[9] Raphaël Côte; Claudio Muñoz Multi-solitons for nonlinear Klein–Gordon equations, Forum Math. Sigma, Volume 2 (2014), e15, 38 pages | DOI | MR | Zbl

[10] John Gibbons; S. G. Thornhill; M. J. Wardrop; Dirk ter Haar On the theory of Langmuir solitons, J. Plasma Phys., Volume 17 (1977) no. 2, pp. 153-170 | DOI

[11] J. Ginibre; Y. Tsutsumi; G. Velo On the Cauchy problem for the Zakharov system, J. Funct. Anal., Volume 151 (1997) no. 2, pp. 384-436 | DOI | MR | Zbl

[12] Stephen Gustafson; Takahisa Inui; Ikkei Shimizu Multi-solitons for the nonlinear Schrödinger equation with repulsive Dirac delta potential (2023) | arXiv

[13] Tosio Kato On the Cauchy problem for the (generalized) Korteweg–de Vries equation, Studies in applied mathematics (Advances in Mathematics, Supplementary Studies), Volume 8, Academic Press Inc., 1983, pp. 93-128 | MR | Zbl

[14] Yuri S. Kivshar; Boris A. Malomed Dynamics of solitons in nearly integrable systems, Rev. Mod. Phys., Volume 61 (1989) no. 4, pp. 763-915 | DOI

[15] Stefan Le Coz; Dong Li; Tai-Peng Tsai Fast-moving finite and infinite trains of solitons for nonlinear Schrödinger equations, Proc. R. Soc. Edinb., Sect. A, Math., Volume 145 (2015) no. 6, pp. 1251-1282 | DOI | MR | Zbl

[16] Stefan Le Coz; Tai-Peng Tsai Finite and infinite soliton and kink-soliton trains of nonlinear Schrödinger equations, Proceedings of the Sixth International Congress of Chinese Mathematicians. Vol. I (Advanced Lectures in Mathematics), Volume 36, International Press, 2017, pp. 43-56 | MR | Zbl

[17] Yvan Martel Asymptotic N-soliton-like solutions of the subcritical and critical generalized Korteweg–de Vries equations, Am. J. Math., Volume 127 (2005) no. 5, pp. 1103-1140 | DOI | MR | Zbl

[18] Yvan Martel; Frank Merle Instability of solitons for the critical generalized Korteweg–de Vries equation, Geom. Funct. Anal., Volume 11 (2001) no. 1, pp. 74-123 | DOI | MR

[19] Yvan Martel; Frank Merle Multi solitary waves for nonlinear Schrödinger equations, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 23 (2006) no. 6, pp. 849-864 | DOI | Numdam | MR | Zbl

[20] Yvan Martel; Frank Merle; Tai-Peng Tsai Stability in H1 of the sum of K solitary waves for some nonlinear Schrödinger equations, Duke Math. J., Volume 133 (2006) no. 3, pp. 405-466 | DOI | MR | Zbl

[21] María E. Martínez On the decay problem for the Zakharov and Klein–Gordon–Zakharov systems in one dimension, J. Evol. Equ., Volume 21 (2021) no. 4, pp. 3733-3763 | DOI | MR | Zbl

[22] Frank Merle Construction of solutions with exactly k blow-up points for the Schrödinger equation with critical nonlinearity, Commun. Math. Phys., Volume 129 (1990) no. 2, pp. 223-240 | DOI | MR | Zbl

[23] Frank Merle Blow-up results of virial type for Zakharov equations, Commun. Math. Phys., Volume 175 (1996) no. 2, pp. 433-455 | DOI | MR | Zbl

[24] Masahito Ohta Stability of solitary waves for the Zakharov equations in one space dimension, RIMS Kokyuroku, Volume 908 (1995), pp. 148-158 | MR | Zbl

[25] Akansha Sanwal Local well-posedness for the Zakharov system in dimension d3, Discrete Contin. Dyn. Syst., Volume 42 (2022) no. 3, pp. 1067-1103 | DOI | MR | Zbl

[26] Catherine Sulem; Pierre-Louis Sulem The nonlinear Schrödinger equation. Self-focusing and wave collapse, Applied Mathematical Sciences, 139, Springer, 1999, xvi+350 pages | MR

[27] Michael I. Weinstein Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal., Volume 16 (1985) no. 3, pp. 472-491 | DOI | MR | Zbl

[28] Ya Ping Wu Orbital stability of solitary waves of Zakharov system, J. Math. Phys., Volume 35 (1994) no. 5, pp. 2413-2422 | DOI | MR | Zbl

[29] V. E. Zakharov Collapse of Langmuir waves, Sov. Phys. JETP, Volume 35 (1972) no. 5, pp. 908-914

Cité par Sources :

Commentaires - Politique