Comptes Rendus
Article de recherche - Géométrie algébrique
A remark on the effective nonvanishing of Calabi–Yau varieties
[Une remarque sur la non-annulation effective des variétés de Calabi–Yau]
Comptes Rendus. Mathématique, Volume 363 (2025), pp. 1059-1063

For a Calabi–Yau variety $X$, we prove that there exists a positive integer $m$, depending on two natural invariants of the fiber of its Albanese map, such that the pluricanonical system $\vert mK_X \vert $ is non-empty.

Pour une variété de Calabi–Yau $X$, nous démontrons qu’il existe un entier strictement positif $m$, dépendant de deux invariants naturels de la fibre de son application d’Albanese, tel que le système pluricanonique $\vert mK_X \vert $ soit non vide.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.735
Classification : 14E05

Yiming Zhu 1

1 Department of Mathematics, Southern University of Science and Technology, 1088 Xueyuan Rd, Shenzhen 518055, China
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2025__363_G11_1059_0,
     author = {Yiming Zhu},
     title = {A remark on the effective nonvanishing of {Calabi{\textendash}Yau} varieties},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1059--1063},
     year = {2025},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {363},
     doi = {10.5802/crmath.735},
     language = {en},
}
TY  - JOUR
AU  - Yiming Zhu
TI  - A remark on the effective nonvanishing of Calabi–Yau varieties
JO  - Comptes Rendus. Mathématique
PY  - 2025
SP  - 1059
EP  - 1063
VL  - 363
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.735
LA  - en
ID  - CRMATH_2025__363_G11_1059_0
ER  - 
%0 Journal Article
%A Yiming Zhu
%T A remark on the effective nonvanishing of Calabi–Yau varieties
%J Comptes Rendus. Mathématique
%D 2025
%P 1059-1063
%V 363
%I Académie des sciences, Paris
%R 10.5802/crmath.735
%G en
%F CRMATH_2025__363_G11_1059_0
Yiming Zhu. A remark on the effective nonvanishing of Calabi–Yau varieties. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 1059-1063. doi: 10.5802/crmath.735

[1] Arnaud Beauville Some remarks on Kähler manifolds with c 1 =0, Classification of algebraic and analytic manifolds (Katata, 1982) (Progress in Mathematics), Volume 39, Birkhäuser, 1983, pp. 1-26 | Zbl | MR

[2] Caucher Birkar; De-Qi Zhang Effectivity of Iitaka fibrations and pluricanonical systems of polarized pairs, Publ. Math., Inst. Hautes Étud. Sci., Volume 123 (2016), pp. 283-331 | Numdam | DOI | MR | Zbl

[3] Junyan Cao Albanese maps of projective manifolds with nef anticanonical bundles, Ann. Sci. Éc. Norm. Supér. (4), Volume 52 (2019) no. 5, pp. 1137-1154 | Numdam | Zbl | DOI | MR

[4] Osamu Fujino; Yoshinori Gongyo Log pluricanonical representations and the abundance conjecture, Compos. Math., Volume 150 (2014) no. 4, pp. 593-620 | Zbl | DOI | MR

[5] Yujiro Kawamata Characterization of abelian varieties, Compos. Math., Volume 43 (1981) no. 2, pp. 253-276 | Zbl | Numdam | MR

[6] Yujiro Kawamata Minimal models and the Kodaira dimension of algebraic fiber spaces, J. Reine Angew. Math., Volume 363 (1985), pp. 1-46 | Zbl | DOI | MR

[7] Yujiro Kawamata On the plurigenera of minimal algebraic 3-folds with K0, Math. Ann., Volume 275 (1986) no. 4, pp. 539-546 | Zbl | DOI | MR

[8] Ching-Jui Lai Varieties fibered by good minimal models, Math. Ann., Volume 350 (2011) no. 3, pp. 533-547 | Zbl | DOI | MR

[9] David R. Morrison A remark on Kawamata’s paper: ‘On the plurigenera of minimal algebraic 3-folds with K0, Math. Ann., Volume 275 (1986) no. 4, pp. 547-553 | Zbl | DOI | MR

[10] Miles Reid Projective morphisms according to Kawamata (1983) https://mreid.warwick.ac.uk/3folds/Ka.pdf

[11] Kenji Ueno Classification theory of algebraic varieties and compact complex spaces, Lecture Notes in Mathematics, Springer, 1975 no. 439, xix+278 pages | DOI | Zbl | MR

[12] Juanyong Wang Positivity of direct images and projective varieties with nonnegative curvature, Ph. D. Thesis, Institut Polytechnique de Paris (France) (2020) https://theses.hal.science/tel-02982921

Cité par Sources :

Commentaires - Politique