[Une remarque sur la non-annulation effective des variétés de Calabi–Yau]
For a Calabi–Yau variety $X$, we prove that there exists a positive integer $m$, depending on two natural invariants of the fiber of its Albanese map, such that the pluricanonical system $\vert mK_X \vert $ is non-empty.
Pour une variété de Calabi–Yau $X$, nous démontrons qu’il existe un entier strictement positif $m$, dépendant de deux invariants naturels de la fibre de son application d’Albanese, tel que le système pluricanonique $\vert mK_X \vert $ soit non vide.
Révisé le :
Accepté le :
Publié le :
Yiming Zhu 1
CC-BY 4.0
@article{CRMATH_2025__363_G11_1059_0,
author = {Yiming Zhu},
title = {A remark on the effective nonvanishing of {Calabi{\textendash}Yau} varieties},
journal = {Comptes Rendus. Math\'ematique},
pages = {1059--1063},
year = {2025},
publisher = {Acad\'emie des sciences, Paris},
volume = {363},
doi = {10.5802/crmath.735},
language = {en},
}
Yiming Zhu. A remark on the effective nonvanishing of Calabi–Yau varieties. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 1059-1063. doi: 10.5802/crmath.735
[1] Some remarks on Kähler manifolds with , Classification of algebraic and analytic manifolds (Katata, 1982) (Progress in Mathematics), Volume 39, Birkhäuser, 1983, pp. 1-26 | Zbl | MR
[2] Effectivity of Iitaka fibrations and pluricanonical systems of polarized pairs, Publ. Math., Inst. Hautes Étud. Sci., Volume 123 (2016), pp. 283-331 | Numdam | DOI | MR | Zbl
[3] Albanese maps of projective manifolds with nef anticanonical bundles, Ann. Sci. Éc. Norm. Supér. (4), Volume 52 (2019) no. 5, pp. 1137-1154 | Numdam | Zbl | DOI | MR
[4] Log pluricanonical representations and the abundance conjecture, Compos. Math., Volume 150 (2014) no. 4, pp. 593-620 | Zbl | DOI | MR
[5] Characterization of abelian varieties, Compos. Math., Volume 43 (1981) no. 2, pp. 253-276 | Zbl | Numdam | MR
[6] Minimal models and the Kodaira dimension of algebraic fiber spaces, J. Reine Angew. Math., Volume 363 (1985), pp. 1-46 | Zbl | DOI | MR
[7] On the plurigenera of minimal algebraic -folds with , Math. Ann., Volume 275 (1986) no. 4, pp. 539-546 | Zbl | DOI | MR
[8] Varieties fibered by good minimal models, Math. Ann., Volume 350 (2011) no. 3, pp. 533-547 | Zbl | DOI | MR
[9] A remark on Kawamata’s paper: ‘On the plurigenera of minimal algebraic -folds with ’, Math. Ann., Volume 275 (1986) no. 4, pp. 547-553 | Zbl | DOI | MR
[10] Projective morphisms according to Kawamata (1983) https://mreid.warwick.ac.uk/3folds/Ka.pdf
[11] Classification theory of algebraic varieties and compact complex spaces, Lecture Notes in Mathematics, Springer, 1975 no. 439, xix+278 pages | DOI | Zbl | MR
[12] Positivity of direct images and projective varieties with nonnegative curvature, Ph. D. Thesis, Institut Polytechnique de Paris (France) (2020) https://theses.hal.science/tel-02982921
Cité par Sources :
Commentaires - Politique
